cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A383126 Consecutive internal states of the linear congruential pseudo-random number generator (281*s + 28411) mod 134456 when started at 1.

Original entry on oeis.org

1, 28692, 23503, 44410, 3213, 124528, 62219, 32670, 65673, 62052, 120199, 55874, 132109, 41184, 37899, 56006, 34745, 110924, 4263, 16210, 11917, 15688, 134147, 76038, 16585, 117292, 45743, 108874, 100493, 31184, 51475, 106094, 126049, 86252, 63143, 23402
Offset: 1

Views

Author

Sean A. Irvine, Jun 17 2025

Keywords

Comments

Periodic with period 134456.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(281*a(n-1)+28411, 134456))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[281*# + 28411, 134456] &, 1, 50] (* Paolo Xausa, Jun 18 2025 *)

Formula

a(n) = (281*a(n-1) + 28411) mod 134456.

A385358 Consecutive states of the linear congruential pseudo-random number generator (741*s + 66037) mod 312500 when started at s=1.

Original entry on oeis.org

1, 66778, 173535, 217972, 20789, 158186, 94363, 301520, 54857, 90074, 248371, 46448, 109005, 213742, 11359, 45556, 73033, 120990, 32127, 122144, 262241, 11618, 237475, 97512, 134929, 48426, 12203, 45960, 59897, 74714, 116611, 224788, 71445, 194282, 278999
Offset: 1

Views

Author

Sean A. Irvine, Jun 26 2025

Keywords

Comments

Periodic with period 312500.
Described in Numerical Recipes as a "quick and dirty" generator.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(741*a(n-1)+66037, 312500))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[741*# + 66037, 312500] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (741 * a(n-1) + 66037) mod 312500.

A385360 Consecutive states of the linear congruential pseudo-random number generator (1861*s + 49297) mod 233280 when started at s=1.

Original entry on oeis.org

1, 51158, 76095, 61132, 208589, 55506, 2923, 123560, 213657, 155854, 126551, 181188, 150565, 81482, 55299, 84256, 85553, 166470, 54127, 2684, 145341, 157378, 163355, 89112, 24649, 198206, 94983, 219700, 204437, 26874, 139891, 45968, 215265, 115702, 53279
Offset: 1

Views

Author

Sean A. Irvine, Jun 26 2025

Keywords

Comments

Periodic with period 233280.
Described in Numerical Recipes as a "quick and dirty" generator.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(1861*a(n-1)+49297, 233280))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[1861*# + 49297, 233280] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (1861 * a(n-1) + 49297) mod 233280.

A383129 Consecutive internal states of the linear congruential pseudo-random number generator (421*s + 54773) mod 259200 when started at 1.

Original entry on oeis.org

1, 55194, 222647, 217960, 59133, 66566, 85459, 4212, 13625, 88498, 246831, 31424, 65077, 236190, 217163, 241996, 69489, 20042, 198055, 232728, 55661, 160054, 45507, 32420, 225193, 253026, 47519, 101872, 174885, 68558, 146491, 37884, 192737, 67450, 198423
Offset: 1

Views

Author

Sean A. Irvine, Jun 17 2025

Keywords

Comments

Periodic with period 259200.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(421*a(n-1)+54773, 259200))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[421*# + 54773, 259200] &, 1, 50] (* Paolo Xausa, Jun 18 2025 *)

Formula

a(n) = (421*a(n-1) + 54773) mod 259200.

A383128 Consecutive internal states of the linear congruential pseudo-random number generator (321*s + 123) mod 10^5 when started at 1.

Original entry on oeis.org

1, 444, 42647, 89810, 29133, 51816, 33059, 12062, 72025, 20148, 67631, 9674, 5477, 58240, 95163, 47446, 30289, 22892, 48455, 54178, 91261, 94904, 64307, 42670, 97193, 99076, 3519, 29722, 40885, 24208, 70891, 56134, 19137, 43100, 35223, 6706, 52749, 32552
Offset: 1

Views

Author

Sean A. Irvine, Jun 17 2025

Keywords

Comments

Periodic with period 10^5.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(321*a(n-1)+123, 100000))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[321*# + 123, 10^5] &, 1, 50] (* Paolo Xausa, Jun 18 2025 *)

Formula

a(n) = (321*a(n-1) + 123) mod 10^5.

A385361 Consecutive states of the linear congruential pseudo-random number generator (2661*s + 36979) mod 175000 when started at s=1.

Original entry on oeis.org

1, 39640, 169019, 46538, 149597, 164596, 1935, 111014, 45233, 1992, 87691, 107730, 56509, 82428, 102887, 119286, 7025, 5504, 158123, 102282, 84381, 49820, 132999, 97318, 177, 157976, 61115, 88994, 75013, 146572, 165071, 40910, 48489, 91208, 16467, 105666
Offset: 1

Views

Author

Sean A. Irvine, Jun 26 2025

Keywords

Comments

Periodic with period 175000.
Described in Numerical Recipes as a "quick and dirty" generator.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(2661*a(n-1)+36979, 175000))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[2661*# + 36979, 175000] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (2661 * a(n-1) + 36979) mod 175000.

A385365 Consecutive states of the linear congruential pseudo-random number generator (3661*s + 30809) mod 145800 when started at s=1.

Original entry on oeis.org

1, 34470, 108479, 13228, 52917, 137546, 139315, 54624, 117473, 135262, 88191, 96860, 49669, 56418, 124307, 76936, 7905, 102614, 119863, 137052, 80381, 81250, 55059, 106208, 9697, 102126, 82895, 99604, 35253, 59042, 107971, 48840, 83249, 83398, 45687, 58316
Offset: 1

Views

Author

Sean A. Irvine, Jun 26 2025

Keywords

Comments

Periodic with period 145800.
Described in Numerical Recipes as a "quick and dirty" generator.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(3661*a(n-1)+30809, 145800))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[3661*# + 30809, 145800] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (3661 * a(n-1) + 30809) mod 145800.

A385459 Consecutive internal states of the linear congruential pseudo-random number generator (3877*s + 29573) mod 139968 when started at 1.

Original entry on oeis.org

1, 33450, 104855, 85336, 132861, 49430, 53491, 121572, 91961, 63874, 65679, 65264, 135925, 31278, 82091, 9148, 84465, 115226, 122887, 11400, 137453, 76678, 18147, 121556, 29929, 30834, 40319, 2080, 115557, 6494, 12571, 58476, 132833, 80842, 65655, 112184
Offset: 1

Views

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 139968.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(3877*a(n-1)+29573, 139968))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[3877*# + 29573, 139968] &, 1, 50]

Formula

a(n) = (3877*a(n-1) + 29573) mod 139968.

A385461 Consecutive internal states of the linear congruential pseudo-random number generator (8121*s + 28411) mod 134456 when started at 1.

Original entry on oeis.org

1, 36532, 94847, 116930, 88669, 97480, 121019, 84806, 54305, 23636, 107655, 61754, 11765, 108216, 46131, 63846, 59441, 51732, 103439, 109898, 125597, 18432, 65155, 67806, 83617, 79268, 122967, 38706, 1709, 58232, 48731, 68854, 123697, 50972, 116455, 130418
Offset: 1

Views

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 134456.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(8121*a(n-1)+28411, 134456))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[8121*# + 28411, 134456] &, 1, 50]

Formula

a(n) = (8121*a(n-1) + 28411) mod 134456.
Showing 1-9 of 9 results.