cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A383127 Consecutive internal states of the linear congruential pseudo-random number generator (205*s + 29573) mod 139968 when started at 1.

Original entry on oeis.org

1, 29778, 115439, 39976, 106509, 28910, 77467, 93924, 108377, 131914, 58119, 46688, 82789, 65190, 96563, 89500, 41265, 90818, 31519, 52440, 2237, 68254, 24843, 83540, 79177, 24570, 27575, 83728, 117717, 87062, 101347, 90444, 94817, 11506, 8847, 23624, 113581
Offset: 1

Views

Author

Sean A. Irvine, Jun 17 2025

Keywords

Comments

Periodic with period 139968.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(205*a(n-1)+29573, 139968))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[205*# + 29573, 139968] &, 1, 50] (* Paolo Xausa, Jun 18 2025 *)

Formula

a(n) = (205*a(n-1) + 29573) mod 139968.

A385340 Consecutive states of the linear congruential pseudo-random number generator (1093*s + 18257) mod 86436 when started at s=1.

Original entry on oeis.org

1, 19350, 77423, 20752, 53961, 48278, 60151, 71940, 78353, 10, 29187, 24764, 30841, 17430, 53327, 46804, 4917, 33506, 77887, 9288, 57029, 30598, 11139, 5708, 33709, 40458, 70055, 6076, 3753, 57794, 2383, 29796, 85349, 40270, 37443, 59228, 13897, 81378, 21767
Offset: 1

Views

Author

Sean A. Irvine, Jun 25 2025

Keywords

Comments

Periodic with period 86436.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(1093*a(n-1)+18257, 86436))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[1093*# + 18257, 86435] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (1093 * a(n-1) + 18257) mod 86436.

A383129 Consecutive internal states of the linear congruential pseudo-random number generator (421*s + 54773) mod 259200 when started at 1.

Original entry on oeis.org

1, 55194, 222647, 217960, 59133, 66566, 85459, 4212, 13625, 88498, 246831, 31424, 65077, 236190, 217163, 241996, 69489, 20042, 198055, 232728, 55661, 160054, 45507, 32420, 225193, 253026, 47519, 101872, 174885, 68558, 146491, 37884, 192737, 67450, 198423
Offset: 1

Views

Author

Sean A. Irvine, Jun 17 2025

Keywords

Comments

Periodic with period 259200.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(421*a(n-1)+54773, 259200))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[421*# + 54773, 259200] &, 1, 50] (* Paolo Xausa, Jun 18 2025 *)

Formula

a(n) = (421*a(n-1) + 54773) mod 259200.

A385341 Consecutive states of the linear congruential pseudo-random number generator (1021*s + 25673) mod 121500 when started at s=1.

Original entry on oeis.org

1, 26694, 64247, 11860, 106233, 111566, 89059, 72912, 110825, 61498, 121131, 13424, 2077, 80790, 13763, 105196, 24789, 63242, 79255, 26028, 113261, 118654, 35907, 115220, 53293, 5826, 20519, 77572, 8685, 23558, 21391, 117384, 75737, 79150, 40323, 6956, 80749
Offset: 1

Views

Author

Sean A. Irvine, Jun 25 2025

Keywords

Comments

Periodic with period 121500.
Described in Numerical Recipes as a "quick and dirty" generator.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(1021*a(n-1)+25673, 121500))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[1021*# + 25673, 121500] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (1021 * a(n-1) + 25673) mod 121500.

A383128 Consecutive internal states of the linear congruential pseudo-random number generator (321*s + 123) mod 10^5 when started at 1.

Original entry on oeis.org

1, 444, 42647, 89810, 29133, 51816, 33059, 12062, 72025, 20148, 67631, 9674, 5477, 58240, 95163, 47446, 30289, 22892, 48455, 54178, 91261, 94904, 64307, 42670, 97193, 99076, 3519, 29722, 40885, 24208, 70891, 56134, 19137, 43100, 35223, 6706, 52749, 32552
Offset: 1

Views

Author

Sean A. Irvine, Jun 17 2025

Keywords

Comments

Periodic with period 10^5.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(321*a(n-1)+123, 100000))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[321*# + 123, 10^5] &, 1, 50] (* Paolo Xausa, Jun 18 2025 *)

Formula

a(n) = (321*a(n-1) + 123) mod 10^5.

A385338 Consecutive states of the linear congruential pseudo-random number generator (421*s + 17117) mod 81000 when started at s=1.

Original entry on oeis.org

1, 17538, 29615, 11032, 44589, 78086, 5323, 71100, 61217, 31474, 64671, 27608, 57085, 73902, 25859, 49756, 66393, 23570, 58087, 9744, 69341, 49678, 33555, 49772, 73129, 24426, 13463, 15040, 30957, 9014, 5011, 20748, 4025, 10642, 42399, 47096, 80533, 63510
Offset: 1

Views

Author

Sean A. Irvine, Jun 25 2025

Keywords

Comments

Periodic with period 81000.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(421*a(n-1)+17117, 81000))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[421*# + 17117, 81000] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (421 * a(n-1) + 17117) mod 81000.

A385359 Consecutive states of the linear congruential pseudo-random number generator (1597*s + 51749) mod 244944 when started at s=1.

Original entry on oeis.org

1, 53346, 4799, 122488, 199773, 172142, 135355, 173076, 157289, 174682, 27687, 177968, 131605, 62982, 206963, 142204, 88449, 217058, 97615, 158520, 181037, 133918, 82683, 71684, 142249, 160314, 106727, 13744, 200901, 14006, 129427, 13932, 11249, 135490, 143727
Offset: 1

Views

Author

Sean A. Irvine, Jun 26 2025

Keywords

Comments

Periodic with period 244944.
Described in Numerical Recipes as a "quick and dirty" generator.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(1597*a(n-1)+51749, 244944))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[1597*# + 51749, 244944] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (1597 * a(n-1) + 51749) mod 244944.

A385362 Consecutive states of the linear congruential pseudo-random number generator (2041*s + 25673) mod 121500 when started at s=1.

Original entry on oeis.org

1, 27714, 92447, 20500, 70173, 266, 82579, 48912, 103565, 113338, 12531, 86444, 39877, 9630, 119003, 32296, 88809, 6842, 17695, 55668, 41561, 44674, 80307, 28760, 40333, 89826, 17039, 53272, 11325, 54998, 10591, 14904, 69737, 82390, 27663, 109856, 74269, 98202
Offset: 1

Views

Author

Sean A. Irvine, Jun 26 2025

Keywords

Comments

Periodic with period 121500.
Described in Numerical Recipes as a "quick and dirty" generator.

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (2041*Self(n-1)+ 25673) mod 121500: n in [1..40]]; // Vincenzo Librandi, Jun 27 2025
  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(2041*a(n-1)+25673, 121500))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[2041*# + 25673, 121500] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (2041 * a(n-1) + 25673) mod 121500.

A385363 Consecutive states of the linear congruential pseudo-random number generator (3613*s + 45289) mod 214326 when started at s=1.

Original entry on oeis.org

1, 48902, 123591, 138514, 45161, 109896, 167785, 138566, 18711, 135442, 90977, 183432, 89113, 92906, 80151, 76426, 120539, 42264, 145009, 150062, 188841, 128164, 157661, 210300, 73519, 119522, 11385, 28702, 11831, 139818, 41341, 25100, 71691, 159064, 135515
Offset: 1

Views

Author

Sean A. Irvine, Jun 26 2025

Keywords

Comments

Periodic with period 214326.
Described in Numerical Recipes as a "quick and dirty" generator.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(3613*a(n-1)+45289, 214326))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[3613*# + 45289, 214326] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (3613 * a(n-1) + 45289) mod 214326.

A385461 Consecutive internal states of the linear congruential pseudo-random number generator (8121*s + 28411) mod 134456 when started at 1.

Original entry on oeis.org

1, 36532, 94847, 116930, 88669, 97480, 121019, 84806, 54305, 23636, 107655, 61754, 11765, 108216, 46131, 63846, 59441, 51732, 103439, 109898, 125597, 18432, 65155, 67806, 83617, 79268, 122967, 38706, 1709, 58232, 48731, 68854, 123697, 50972, 116455, 130418
Offset: 1

Views

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 134456.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(8121*a(n-1)+28411, 134456))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[8121*# + 28411, 134456] &, 1, 50]

Formula

a(n) = (8121*a(n-1) + 28411) mod 134456.
Showing 1-10 of 10 results.