cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A385078 Consecutive states of the linear congruential pseudo-random number generator (967*s + 3041) mod 14406 when started at s=1.

Original entry on oeis.org

1, 4008, 3563, 5428, 8133, 1976, 12241, 12762, 12359, 11620, 2901, 13544, 5035, 2658, 9059, 4246, 3213, 12722, 2491, 6036, 5423, 3298, 8481, 7154, 6079, 3786, 4979, 6130, 9885, 10658, 9037, 11784, 3023, 1864, 4779, 8, 10777, 8862, 1025, 202, 11097, 1370, 2479
Offset: 1

Views

Author

Sean A. Irvine, Jun 16 2025

Keywords

Comments

Periodic with period 14406.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(967*a(n-1)+3041, 14406))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[967*# + 3041, 14406] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)

Formula

a(n) = (967 * a(n-1) + 3041) mod 14406.

A385279 Consecutive states of the linear congruential pseudo-random number generator (625*s + 6571) mod 31104 when started at s=1.

Original entry on oeis.org

1, 7196, 25095, 14530, 5453, 24360, 21715, 17102, 26649, 21556, 11039, 858, 14053, 18368, 9195, 30310, 7985, 20556, 8119, 10994, 3837, 9688, 27395, 21246, 3913, 26084, 10575, 21898, 7061, 2928, 1435, 1430, 29409, 4732, 9191, 27810, 685, 30344, 29235, 20398
Offset: 1

Views

Author

Sean A. Irvine, Jun 23 2025

Keywords

Comments

Periodic with period 31104.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(625*a(n-1)+6571, 31104))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[625*# + 6571, 31104] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (625 * a(n-1) + 6571) mod 31104.

A385337 Consecutive states of the linear congruential pseudo-random number generator (1291*s + 4621) mod 21870 when started at s=1.

Original entry on oeis.org

1, 5912, 4383, 20614, 1505, 1146, 18817, 21668, 6279, 18910, 10511, 14922, 1453, 21494, 345, 12616, 20597, 1428, 11089, 17540, 13311, 21172, 173, 9264, 1555, 86, 6297, 20278, 5129, 21420, 14161, 3152, 6033, 7504, 3875, 20886, 2737, 17018, 17379, 2290, 8561
Offset: 1

Views

Author

Sean A. Irvine, Jun 25 2025

Keywords

Comments

Periodic with period 21870.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(1291*a(n-1)+4621, 21870))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[1291*# + 4621, 21870] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (1291 * a(n-1) + 4621) mod 21870.

A385339 Consecutive states of the linear congruential pseudo-random number generator (1255*s + 6173) mod 29282 when started at s=1.

Original entry on oeis.org

1, 7428, 16637, 7542, 13297, 3168, 28943, 19958, 17353, 27662, 22813, 27974, 4425, 25250, 11799, 26508, 9361, 12146, 22763, 23788, 21755, 17874, 8031, 12070, 15229, 26704, 21085, 26202, 5997, 6934, 11589, 26496, 23583, 28018, 1081, 15856, 22975, 26310, 24409
Offset: 1

Views

Author

Sean A. Irvine, Jun 25 2025

Keywords

Comments

Periodic with period 29282.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(1255*a(n-1)+6173, 29282))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[1255*# + 6173, 29282] &, 1, 50] (* after Paolo Xausa *)

Formula

a(n) = (1255 * a(n-1) + 6173) mod 29282.
Showing 1-4 of 4 results.