cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A181770 Number of isomorphism classes of racks of order n.

Original entry on oeis.org

1, 1, 2, 6, 19, 74, 353, 2080, 16023, 159526, 2093244, 36265070, 836395102, 25794670618
Offset: 0

Views

Author

Keywords

Comments

Also the number of isomorphism classes of Legendrian racks of order n; see Ta, "Good involutions...," Theorem 10.1.
Also the number of isomorphism classes of GL-quandles of order n; see Ta, "Classification and...," Theorem 5.6.

Crossrefs

Extensions

a(9)-a(13) from Petr Vojtěchovský and Seung Yeop Yang added by Andrey Zabolotskiy, Jun 15 2022

A386231 Number of symmetric racks of order n, up to isomorphism.

Original entry on oeis.org

1, 1, 4, 9, 42, 154, 1064, 6678, 73780
Offset: 0

Views

Author

Luc Ta, Jul 16 2025

Keywords

Comments

A good involution f of a rack R is an involution that commutes with all inner automorphisms and satisfies the identity f(y)(x) = y^-1(x). We call the pair (R,f) a symmetric rack. A symmetric rack isomorphism is a rack isomorphism that intertwines good involutions.

References

  • Seiichi Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of Low Dimensional Topology 2006, World Scientific Publishing Co. Pte. Ltd., 2007, 101-108.

Crossrefs

Programs

  • GAP
    # See Ta, GitHub link

A386233 Number of good involutions of all nontrivial conjugation quandles of order A060652(n).

Original entry on oeis.org

1, 32, 1, 17, 1, 13056, 66, 33, 1, 1
Offset: 1

Views

Author

Luc Ta, Jul 16 2025

Keywords

Comments

A good involution f of a quandle Q is an involution that commutes with all inner automorphisms and satisfies the identity f(y)(x) = y^-1(x). We call the pair (Q,f) a symmetric quandle.
A conjugation quandle is a group viewed as a quandle under the conjugation operation. Since conjugation quandles of abelian groups are trivial, this sequence only considers nonabelian groups.

Examples

			For n = 1, 3, 5, 9, 10, there is a unique nonabelian group G of order A060652(n), and G is centerless. It follows from Ta, Prop. 5.3 that a(n) = 1.
		

References

  • Seiichi Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of Low Dimensional Topology 2006, World Scientific Publishing Co. Pte. Ltd., 2007, 101-108.

Crossrefs

Programs

  • GAP
    See Ta, GitHub link

A386232 Number of symmetric quandles of order n, up to isomorphism.

Original entry on oeis.org

1, 1, 2, 5, 13, 44, 187, 937, 6459
Offset: 0

Views

Author

Luc Ta, Jul 16 2025

Keywords

Comments

A good involution f of a quandle Q is an involution that commutes with all inner automorphisms and satisfies the identity f(y)(x) = y^-1(x). We call the pair (Q,f) a symmetric quandle. A symmetric quandle isomorphism is a quandle isomorphism that intertwines good involutions.

References

  • Seiichi Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of Low Dimensional Topology 2006, World Scientific Publishing Co. Pte. Ltd., 2007, 101-108.

Crossrefs

Programs

  • GAP
    See Ta, GitHub link

A385040 Number of isomorphism classes of virtual racks of order n.

Original entry on oeis.org

1, 1, 4, 15, 71, 350, 2372, 18543, 199491
Offset: 0

Views

Author

Luc Ta, Jun 16 2025

Keywords

Comments

A virtual rack is a rack equipped with a distinguished rack automorphism. Two virtual racks (R1,f1), (R2,f2) are isomorphic if there exists a rack isomorphism g: R1 -> R2 such that g*f1 = f2*g.

Crossrefs

Programs

  • GAP
    See Ta, GitHub link

Extensions

a(4)-a(8) corrected by Luc Ta, Jul 05 2025
Showing 1-5 of 5 results.