cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385056 Prime numbers whose digit product is a positive cube.

Original entry on oeis.org

11, 139, 181, 193, 241, 389, 421, 811, 839, 881, 983, 1181, 1193, 1319, 1777, 1811, 1913, 1931, 1999, 2141, 2221, 2269, 2411, 2663, 3119, 3191, 3313, 3331, 3463, 3643, 3833, 3889, 3911, 4211, 4363, 4441, 4691, 6229, 6263, 6343, 6491, 6661, 7177, 7717, 7877, 8111
Offset: 1

Views

Author

Mohd Anwar Jamal Faiz, Jun 16 2025

Keywords

Crossrefs

Intersection of A000040 and A237767.
Subsequence of A038618.
Cf. A184328.

Programs

  • Maple
    q:= n-> isprime(n) and (p-> p>0 and iroot(p, 3)^3=p)(mul(i, i=convert(n, base, 10))):
    select(q, [$2..10000])[];  # Alois P. Heinz, Jun 16 2025
  • Mathematica
    q[n_] := Module[{pd = Times @@ IntegerDigits[n]}, pd > 0 && IntegerQ[Surd[pd, 3]]]; Select[Prime[Range[1300]], q] (* Amiram Eldar, Jun 16 2025 *)
  • PARI
    isok(k) = if (isprime(k), my(p=vecprod(digits(k))); p && ispower(p, 3)); \\ Michel Marcus, Jun 16 2025
  • Python
    from sympy import primerange, integer_nthroot
    from math import prod
    is_cube = lambda n: n > 0 and integer_nthroot(n, 3)[1]
    digit_product = lambda n: prod(map(int, str(n)))
    cubigit_primes = [p for p in primerange(2, 100000) if is_cube(dp := digit_product(p))]
    print(cubigit_primes)