cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385182 Values of u in the quartets (1,u,v,w); i.e., values of u for solutions to (1+u) = v*(v+w), in positive integers, with v>1, sorted by nondecreasing values of u; see Comments.

Original entry on oeis.org

5, 7, 9, 11, 11, 13, 14, 15, 17, 17, 19, 19, 20, 21, 23, 23, 23, 25, 26, 27, 27, 29, 29, 29, 31, 31, 32, 33, 34, 35, 35, 35, 37, 38, 39, 39, 39, 41, 41, 41, 43, 43, 44, 44, 45, 47, 47, 47, 47, 49, 49, 50, 51, 51, 53, 53, 53, 54, 55, 55, 55, 56, 57, 59, 59
Offset: 1

Views

Author

Clark Kimberling, Jun 23 2025

Keywords

Comments

A 4-tuple (m,u,v,w) is a quartet if m,u,v,w are positive integers such that m
If m is a prime, then (u,v,w) = (m+2,m+1,m-1) is the first solution (in the defined ordering of triples).
u >= 1 appears A056924(u+1)-1 times. - Pontus von Brömssen, Jul 06 2025

Examples

			First 30 quartets (1,u,v,w):
  m    u    v    w
  1    5    2    1
  1    7    2    2
  1    9    2    3
  1   11    2    4
  1   11    3    1
  1   13    2    5
  1   14    3    2
  1   15    2    6
  1   17    2    7
  1   17    3    3
  1   19    2    8
  1   19    4    1
  1   20    3    4
  1   21    2    9
  1   23    2   10
  1   23    3    5
  1   23    4    2
  1   25    2   11
  1   26    3    6
  1   27    2   12
  1   27    4    3
  1   29    2   13
  1   29    3    7
  1   29    5    1
  1   31    2   14
  1   31    4    4
  1   32    3    8
  1   33    2   15
  1   34    5    2
  1   35    2   16
1*(1+23) = 2*(2+10) = 3*(3+5) = 4*(4+2), so three of the rows are (1,23,2,10), (1,23,3,5), and (1,23,4,2).
		

Crossrefs

Guide to related sequences:
m | u | v | w
--+---------+---------+--------
--+---------+---------+--------
Cf. A056924.

Programs

  • Mathematica
    Clear[solnsM];
    solnsM[m_, max_] := Module[{ans = {}, rhs = {}, u, v, w, lhs, matching},
    Do[Do[AppendTo[rhs, {v*(v + w), v, w}], {w, max}], {v, m*(m + max)}];
    rhs = GatherBy[rhs, First];
    Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &];
    If[Length[matching] > 0, Do[AppendTo[ans,
    Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i,
    Length[matching]}]], {u, max}];
    ans = Flatten[ans, 1];
    Select[Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &,
    Sort[Select[DeleteDuplicates[
    ans], {#[[1]], #[[2]]} =!= {#[[3]], #[[4]]} &]]]], #[[1]] == m &]];
    TableForm[solns = solnsM[1, 140], TableHeadings -> {None, {"m", "u", "v", "w"}}]
    aa = Flatten[solns]
    Map[#[[2]] &, solns]    (* u, A385182 *)
    Map[#[[3]] &, solns]    (* v, A385183 *)
    Map[#[[4]] &, solns]    (* w, A385184 *)
    (*Peter J.C.Moses, Jun 15 2025*)