cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A385599 The v sequence in quartets (4,u,v,w); see A385182.

Original entry on oeis.org

5, 6, 7, 5, 6, 6, 8, 5, 8, 6, 7, 8, 6, 8, 5, 8, 6, 9, 7, 8, 5, 6, 8, 10, 8, 6, 11, 8, 5, 7, 10, 6, 8, 9, 8, 6, 12, 5, 8, 10, 6, 7, 8, 12, 8, 11, 5, 6, 9, 10, 12, 8, 6, 8, 12, 7, 5, 8, 10, 6, 12, 8, 13, 6, 8, 9, 12, 5, 10, 11, 7, 8, 14, 6, 12, 8, 5, 6, 8, 10
Offset: 1

Views

Author

Clark Kimberling, Jul 12 2025

Keywords

Crossrefs

A385600 The w sequence in quartets (4,u,v,w); see A385182.

Original entry on oeis.org

3, 2, 1, 7, 4, 6, 1, 11, 2, 8, 5, 3, 10, 4, 15, 5, 12, 3, 9, 6, 19, 14, 7, 2, 8, 16, 1, 9, 23, 13, 4, 18, 10, 7, 11, 20, 1, 27, 12, 6, 22, 17, 13, 2, 14, 5, 31, 24, 11, 8, 3, 15, 26, 16, 4, 21, 35, 17, 10, 28, 5, 18, 3, 30, 19, 15, 6, 39, 12, 9, 25, 20, 2
Offset: 1

Views

Author

Clark Kimberling, Jul 12 2025

Keywords

Crossrefs

A385183 The v sequence in quartets (1,u,v,w); see A385182.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 4, 3, 2, 2, 3, 4, 2, 3, 2, 4, 2, 3, 5, 2, 4, 3, 2, 5, 2, 3, 4, 2, 3, 2, 4, 5, 2, 3, 6, 2, 4, 3, 5, 2, 2, 3, 4, 6, 2, 5, 3, 2, 4, 2, 3, 6, 5, 2, 4, 7, 3, 2, 2, 3, 4, 5, 6, 2, 3, 7, 2, 4, 5, 2, 3, 6, 2, 4, 3, 2, 5, 7, 2, 3, 4
Offset: 1

Views

Author

Clark Kimberling, Jun 23 2025

Keywords

Crossrefs

Cf. A385182.

A385184 The w sequence in quartets (1,u,v,w); see A385182.

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 2, 6, 7, 3, 8, 1, 4, 9, 10, 5, 2, 11, 6, 12, 3, 13, 7, 1, 14, 4, 8, 15, 2, 16, 9, 5, 17, 10, 18, 6, 3, 19, 11, 1, 20, 7, 12, 4, 21, 22, 13, 8, 2, 23, 5, 14, 24, 9, 25, 15, 3, 6, 26, 10, 1, 16, 27, 28, 17, 11, 7, 4, 29, 18, 2, 30, 12, 8, 31
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2025

Keywords

Crossrefs

Cf. A385182.

A385592 Values of u in the quartets (2,u,v,w); i.e., values of u for solutions to 2*(2+u) = v*(v+w), in positive integers, with and v>m, sorted by nondecreasing values of u; see Comments.

Original entry on oeis.org

4, 7, 8, 10, 10, 12, 13, 13, 14, 16, 16, 18, 18, 19, 19, 20, 22, 22, 22, 23, 24, 25, 25, 26, 26, 28, 28, 28, 28, 30, 31, 31, 32, 33, 33, 34, 34, 34, 34, 36, 37, 37, 38, 38, 38, 40, 40, 40, 40, 42, 42, 43, 43, 43, 43, 44, 46, 46, 46, 46, 47, 48, 48, 49, 49
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2025

Keywords

Comments

A 4-tuple (m,u,v,w) is a quartet if m,u,v,w are positive integers such that mA385182.

Examples

			First 30 quartets (2,u,v,w):
  m    u   v   w
  2    4   3   1
  2    7   3   3
  2    8   4   1
  2   10   3   5
  2   10   4   2
  2   12   4   3
  2   13   3   7
  2   13   5   1
  2   14   4   4
  2   16   3   9
  2   16   4   5
  2   18   4   6
  2   18   5   3
  2   19   3  11
  2   19   6   1
  2   20   4   7
  2   22   3  13
  2   22   4   8
  2   22   6   2
  2   23   5   5
  2   24   4   9
  2   25   3  15
  2   25   6   3
  2   26   4  10
  2   26   7   1
  2   28   3  17
  2   28   4  11
  2   28   5   7
  2   28   6   4
  2   30   4  12
2(2+16) = 3(3+9) = 4(4+5), so (2,16,3,9) and (2,16,4,5) are rows.
		

Crossrefs

Programs

  • Mathematica
    Clear[solnsM];
    solnsM[m_, max_] := Module[{ans = {}, rhs = {}, u, v, w, lhs, matching},
    Do[Do[AppendTo[rhs, {v*(v + w), v, w}], {w, max}], {v, m*(m + max)}];
    rhs = GatherBy[rhs, First];
    Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &];
    If[Length[matching] > 0, Do[AppendTo[ans,
    Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i,
    Length[matching]}]], {u, max}];
    ans = Flatten[ans, 1];
    Select[Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &,
    Sort[Select[DeleteDuplicates[
    ans], {#[[1]], #[[2]]} =!= {#[[3]], #[[4]]} &]]]], #[[1]] == m &]];
    TableForm[solns = solnsM[2, 140], TableHeadings -> {None, {"m", "u", "v", "w"}}]
    aa = Flatten[solns]
    Map[#[[2]] &, solns]    (* u, A385592 *)
    Map[#[[3]] &, solns]    (* v, A385593 *)
    Map[#[[4]] &, solns]    (* w, A385594 *)
    (* Peter J. C. Moses, Jun 15 2025 *)

A386218 Values of u in the quartets (1, u, v, w) of type 2; i.e., values of u for solutions to (1 + u) = v(v - w), in positive integers, with v > 1, sorted by nondecreasing values of u; see Comments.

Original entry on oeis.org

7, 9, 11, 13, 14, 15, 17, 17, 19, 20, 21, 23, 23, 23, 25, 26, 27, 27, 29, 29, 31, 31, 32, 33, 34, 35, 35, 35, 37, 38, 39, 39, 39, 41, 41, 43, 43, 44, 44, 45, 47, 47, 47, 47, 49, 49, 50, 51, 51, 53, 53, 53, 54, 55, 55, 56, 57, 59, 59, 59, 59, 59, 61, 62, 62
Offset: 1

Views

Author

Clark Kimberling, Jul 29 2025

Keywords

Comments

A 4-tuple (m, u, v, w) is a quartet of type 2 if m, u, v, w are distinct positive integers such that m < v and m*(m + u) = v*(v - w). Here, the values of u are arranged in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m = 1.

Examples

			First 20 quartets (1,u,v,w) of type 2:
  m   u   v   w
  1   7   4   2
  1   9   5   3
  1  11   6   4
  1  13   7   5
  1  14   5   2
  1  15   8   6
  1  17   6   3
  1  17   9   7
  1  19  10   8
  1  20   7   4
  1  21  11   9
  1  23   6   2
  1  23   8   5
  1  23  12  10
  1  25  13  11
  1  26   9   6
  1  27   7   3
  1  27  14  12
  1  29  10   7
  1  29  15  13
Example : 1 (1 + 17) = 6 (6 - 3), so (1, 17, 6, 3) is in the list.
		

Crossrefs

Cf. A385182 (type 1), A386630 (type 3).

Programs

  • Mathematica
    Clear[solnsM];
    solnsM[m_, max_] := Module[{ans = {}, rhs = {}, u, v, w, lhs, matching},
    Do[Do[AppendTo[rhs, {v*(v - w), v, w}], {w, max}], {v, m*(m + max)}];
    rhs = GatherBy[rhs, First];
    Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &];
    If[Length[matching] > 0, Do[AppendTo[ans,
    Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i,
    Length[matching]}]], {u, max}];
    ans = Flatten[ans, 1];
    Select[Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &,
    Sort[Select[DeleteDuplicates[ans],
    Length[Union[#]] == 4 &]]]], #[[1]] == m &]];
    TableForm[solns = solnsM[1, 100],
    TableHeadings -> {None, {"m", "u", "v", "w"}}]
    u1 = Map[#[[2]] &, solns]  (*u, A386218 *)
    v1 = Map[#[[3]] &, solns]  (*v, A385883 *)
    w1 = Map[#[[4]] &, solns]  (*w, A386630 *)
    (* Peter J. C. Moses, Jun 15 2025  *)

A385595 The u sequence in quartets (3,u,v,w); i.e., values of u for solutions to 3*(3+u) = v*(v+w), in positive integers, with u,v>=3 and u>=m, sorted by nondecreasing values of u; see Comments.

Original entry on oeis.org

5, 7, 9, 11, 12, 13, 13, 15, 17, 17, 17, 18, 19, 21, 21, 21, 22, 23, 25, 25, 25, 27, 27, 27, 29, 29, 29, 30, 31, 32, 32, 33, 33, 33, 35, 36, 37, 37, 37, 37, 37, 39, 39, 39, 41, 41, 41, 42, 42, 43, 45, 45, 45, 45, 46, 47, 47, 47, 48, 49, 49, 49, 51, 51, 52
Offset: 1

Views

Author

Clark Kimberling, Jul 07 2025

Keywords

Comments

A 4-tuple (m,u,v,w) is a quartet if m,u,v,w are positive integers such that m<=u, mA385182.

Examples

			First 30 quartets (3,u,v,w):
   m    u    v    w
   3    5    4    2
   3    7    5    1
   3    9    4    5
   3   11    6    1
   3   12    5    4
   3   13    4    8
   3   13    6    2
   3   15    6    3
   3   17    4   11
   3   17    5    7
   3   17    6    4
   3   18    7    2
   3   19    6    5
   3   21    4   14
   3   21    4   14
   3   21    6    6
   3   21    8    1
   3   22    5   10
   3   23    6    7
   3   25    4   17
   3   25    6    8
   3   25    7    5
   3   27    5   13
   3   27    6    9
   3   27    9    1
   3   29    4   20
   3   29    6   10
   3   29    8    4
   3   30    9    2
   3   31    6   11
3(3+13) = 4(4+8) = 6(6+2), so (3,13,4,8) and (3,13,6,2) are rows.
		

Crossrefs

Programs

  • Mathematica
    Clear[solnsM];
    solnsM[m_, max_] := Module[{ans = {}, rhs = {}, u, v, w, lhs, matching},
    Do[Do[AppendTo[rhs, {v*(v + w), v, w}], {w, max}], {v, m*(m + max)}];
    rhs = GatherBy[rhs, First];
    Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &];
    If[Length[matching] > 0, Do[AppendTo[ans,
    Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i,
    Length[matching]}]], {u, max}];
    ans = Flatten[ans, 1];
    Select[Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &,
    Sort[Select[DeleteDuplicates[
    ans], {#[[1]], #[[2]]} =!= {#[[3]], #[[4]]} &]]]], #[[1]] == m &]];
    TableForm[solns = solnsM[3, 140], TableHeadings -> {None, {"m", "u", "v", "w"}}]
    aa = Flatten[solns]
    Map[#[[2]] &, solns]    (* u, A385595 *)
    Map[#[[3]] &, solns]    (* v, A385596 *)
    Map[#[[4]] &, solns]    (* w, A385597 *)
    (*Peter J.C.Moses, Jun 15 2025*)

A385598 The u sequence in quartets (4,u,v,w); i.e., values of u for solutions to 4(4+u) = v(v+w), in positive integers, v>m, sorted by nondecreasing values of u; see Comments.

Original entry on oeis.org

6, 8, 10, 11, 11, 14, 14, 16, 16, 17, 17, 18, 20, 20, 21, 22, 23, 23, 24, 24, 26, 26, 26, 26, 28, 29, 29, 30, 31, 31, 31, 32, 32, 32, 34, 35, 35, 36, 36, 36, 38, 38, 38, 38, 40, 40, 41, 41, 41, 41, 41, 42, 44, 44, 44, 45, 46, 46, 46, 47, 47, 48, 48, 50, 50
Offset: 1

Views

Author

Clark Kimberling, Jul 10 2025

Keywords

Comments

A 4-tuple (m,u,v,w) is a quartet if m,u,v,w are positive integers such that m>v and and m*(m+u) = v*(v+w), with the values of u in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m=4; for m=1, see A385182.

Examples

			First 30 quartets (4,u,v,w):
   m    u    v    w
   4    6    5    3
   4    8    6    2
   4   10    7    1
   4   11    5    7
   4   11    6    4
   4   14    6    6
   4   14    8    1
   4   16    5   11
   4   16    8    2
   4   17    6    8
   4   17    7    5
   4   18    8    3
   4   20    6   10
   4   20    8    4
   4   21    5   15
   4   22    8    5
   4   23    6   12
   4   23    9    3
   4   24    7    9
   4   24    8    6
   4   26    5   19
   4   26    6   14
   4   26    8    7
   4   26   19    2
   4   28    8    8
   4   29    6   16
   4   29   11    1
   4   30    8    9
   4   31    5   23
   4   31    7   13
4(4+16) = 5(5+11) = 8(8+2), so (4,16,5,11) and (4,16,8,2) are rows.
		

Crossrefs

Programs

  • Mathematica
    Clear[solnsM];
    solnsM[m_, max_] := Module[{ans = {}, rhs = {}, u, v, w, lhs, matching},
    Do[Do[AppendTo[rhs, {v*(v + w), v, w}], {w, max}], {v, m*(m + max)}];
    rhs = GatherBy[rhs, First];
    Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &];
    If[Length[matching] > 0, Do[AppendTo[ans,
    Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i,
    Length[matching]}]], {u, max}];
    ans = Flatten[ans, 1];
    Select[Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &,
    Sort[Select[DeleteDuplicates[
    ans], {#[[1]], #[[2]]} =!= {#[[3]], #[[4]]} &]]]], #[[1]] == m &]];
    TableForm[solns = solnsM[4, 140], TableHeadings -> {None, {"m", "u", "v", "w"}}]
    aa = Flatten[solns]
    Map[#[[2]] &, solns]    (* u, A385598 *)
    Map[#[[3]] &, solns]    (* v, A385599 *)
    Map[#[[4]] &, solns]    (* w, A385600 *)
    (*Peter J.C.Moses, Jun 15 2025*)

A386285 Values of u in the quartets (3, u, v, w) of type 2; i.e., values of u for solutions to 3(3 + u) = v(v - w), in positive integers, with v > 1, sorted by nondecreasing values of u; see Comments.

Original entry on oeis.org

1, 1, 2, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 9, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 15, 15, 16, 17, 17, 17, 17, 17, 18, 18, 19, 19, 19, 20, 21, 21, 21, 21, 21, 22, 22, 23, 23, 23, 24, 25, 25, 25, 25, 25, 26, 27, 27, 27, 27, 27, 28, 29, 29, 29, 29, 29, 30
Offset: 1

Views

Author

Clark Kimberling, Aug 12 2025

Keywords

Comments

A 4-tuple (m, u, v, w) is a quartet of type 2 if m, u, v, w are distinct positive integers such that m < v and m*(m + u) = v*(v - w). Here, the values of u are arranged in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m = 3.

Examples

			First 20 quartets (3,u,v,w) of type 2:
    m    u    v    w
    3    1    6    4
    3    1   12   11
    3    2   15   14
    3    4   21   20
    3    5    6    2
    3    5   12   10
    3    5   24   23
    3    6   27   26
    3    7    6    1
    3    7   15   13
    3    7   30   29
    3    8   33   32
    3    9   18   16
    3    9   36   35
    3   10   39   38
    3   11    7    1
    3   11   21   19
    3   11   42   41
    3   12    9    4
    3   12   45   44
3(3+2) = 15(15-14), so (3,2,15,14) is in the list.
		

Crossrefs

Cf. A385182 (type 1, m=1), A386286, A386630 (type 3, m=1).

Programs

  • Mathematica
    solnsB[t_, u_] := Module[{n = t*(t + u)},
    Cases[Select[Divisors[n], # < n/# &],
    d_ :> With[{v = n/d, w = n/d - d}, {t, u, v, w} /;
    Length[DeleteDuplicates[{t, u, v, w}]] == 4]]];
    TableForm[solns = Flatten[Table[Sort[solnsB[3, u]], {u, 50}], 1],
    TableHeadings -> {None, {"m", "u", "v", "w"}}]
    Map[#[[2]] &, solns] (*u,A386285*)
    Map[#[[3]] &, solns] (*v,A386286*)
    Map[#[[4]] &, solns] (*w,A386287*)
    (* Peter J. C. Moses, Aug 17 2025  *)

A386288 Values of u in the quartets (4, u, v, w) of type 2; i.e., values of u for solutions to 4(4 + u) = v(v - w), in distinct positive integers, with v > 1, sorted by nondecreasing values of u; see Comments.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 3, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24
Offset: 1

Views

Author

Clark Kimberling, Aug 12 2025

Keywords

Comments

A 4-tuple (m, u, v, w) is a quartet of type 2 if m, u, v, w are distinct positive integers such that m < v and m*(m + u) = v*(v - w). Here, the values of u are arranged in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m = 4.

Examples

			First 20 quartets (4,u,v,w) of type 2:
   m   u    v    w
   4   1   10    8
   4   1   20   19
   4   2    8    5
   4   2   12   10
   4   2   24   23
   4   3   14   12
   4   3   28   27
   4   5   12    9
   4   5   18   16
   4   5   36   35
   4   6    8    3
   4   6   20   18
   4   6   40   39
   4   7   22   20
   4   7   44   43
   4   8   16   13
   4   8   24   22
   4   8   48   47
   4   9   26   24
   4   9   52   51
4(4+2) = 8(8-5), so (4,2,8,5) is in the list.
		

Crossrefs

Cf. A385182 (type 1, m=1), A386630 (type 3, m=1).

Programs

  • Mathematica
    solnsB[t_, u_] := Module[{n = t*(t + u)},
    Cases[Select[Divisors[n], # < n/# &],
    d_ :> With[{v = n/d, w = n/d - d}, {t, u, v, w} /;
    Length[DeleteDuplicates[{t, u, v, w}]] == 4]]];
    TableForm[solns = Flatten[Table[Sort[solnsB[4, u]], {u, 26}], 1],
    TableHeadings -> {None, {"m", "u", "v", "w"}}]
    u1 = Map[#[[2]] &, solns] (*u, A386288 *)
    v1 = Map[#[[3]] &, solns] (*v, A386628 *)
    w1 = Map[#[[4]] &, solns] (*w, A386629 *)
    (* Peter J. C. Moses, Aug 17 2025  *)
Showing 1-10 of 17 results. Next