cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385285 a(n) = Sum_{k=0..n} (binomial(n, k) mod 8).

Original entry on oeis.org

1, 2, 4, 8, 16, 16, 32, 32, 16, 32, 24, 48, 40, 64, 40, 64, 16, 32, 40, 64, 48, 48, 88, 96, 40, 80, 88, 112, 72, 112, 112, 128, 16, 32, 40, 64, 64, 96, 120, 160, 48, 96, 72, 144, 104, 176, 160, 192, 40, 80, 104, 176, 120, 176, 176, 224, 72, 144, 160, 224, 176
Offset: 0

Views

Author

Peter Luschny, Jun 26 2025

Keywords

Comments

a(n) is a multiple of A001316(n). - Chai Wah Wu, Jun 26 2025

Crossrefs

Cf. A034930 (row sums of), A001316 (mod 2), A384715 (mod 4).

Programs

  • Maple
    A385285 := n -> local k; add(modp(binomial(n, k), 8), k = 0..n): seq(A385285(n), n = 0..60);
  • Mathematica
    A385285[n_] := Sum[Mod[Binomial[n, k], 8], {k, 0, n}];
    Array[A385285, 100, 0] (* Paolo Xausa, Jun 26 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k) % 8); \\ Michel Marcus, Jun 26 2025
    
  • Python
    def A385285(n):
        if n==0: return 1
        s = '0'+bin(n)[2:]
        n1 = n>>1
        n2 = n1>>1
        n3 = n2>>1
        np = ~n
        n1111 = (n3&n2&n1&n).bit_count()
        n11 = (n1&n).bit_count()
        n101 = (n2&(~n1)&n).bit_count()
        n100 = (n2&(~n1)&np).bit_count()
        n110 = (n2&n1&np).bit_count()
        n10 = (n1&np).bit_count()
        n1100 = (n3&n2&(~n1)&np).bit_count()
        m11 = s.count('0110')
        m111 = s.endswith('0111')
        c = (n100<<2)+n110+(n10*(n10-1)>>1)
        if n11==0:
            c += n10+(n100<<1)
        elif n11==1:
            c += (n10-n1100<<1)+n110
        else:
            c += n10<<1
        if not (n1111 or n11 or n101):
            c += 1
        elif not (n1111 or n11) and n101:
            c += 3
        elif m111:
            c += 4
        elif not (n1111 or n101 or m11) and n11:
            c += 2
        else:
            c += 4
        return c<Chai Wah Wu, Jun 26 2025