cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A385292 Numbers whose digits all belong to the same residue class mod 3.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 17, 22, 25, 28, 30, 33, 36, 39, 41, 44, 47, 52, 55, 58, 60, 63, 66, 69, 71, 74, 77, 82, 85, 88, 90, 93, 96, 99, 111, 114, 117, 141, 144, 147, 171, 174, 177, 222, 225, 228, 252, 255, 258, 282, 285, 288, 300, 303, 306, 309, 330, 333, 336, 339, 360, 363, 366
Offset: 1

Views

Author

Stefano Spezia, Jun 24 2025

Keywords

Crossrefs

Similar sequences for other values of the modulo k: A059708 (k=2), this sequence (k=3), A385293 (k=4), A385294 (k=5), A385295 (k=6), A385296 (k=7), A385297 (k=8), A385298 (k=9).

Programs

  • Mathematica
    Select[Range[0,366],Length[DeleteDuplicates[Mod[IntegerDigits[#],3]]] == 1 &]

A385294 Numbers whose digits all belong to the same residue class mod 5.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 16, 22, 27, 33, 38, 44, 49, 50, 55, 61, 66, 72, 77, 83, 88, 94, 99, 111, 116, 161, 166, 222, 227, 272, 277, 333, 338, 383, 388, 444, 449, 494, 499, 500, 505, 550, 555, 611, 616, 661, 666, 722, 727, 772, 777, 833, 838, 883, 888, 944, 949, 994, 999, 1111, 1116
Offset: 1

Views

Author

Stefano Spezia, Jun 24 2025

Keywords

Crossrefs

Similar sequences for other values of the modulo k: A059708 (k=2), A385292 (k=3), A385293 (k=4), this sequence (k=5), A385295 (k=6), A385296 (k=7), A385297 (k=8), A385298 (k=9).

Programs

  • Mathematica
    Select[Range[0,1200],Length[DeleteDuplicates[Mod[IntegerDigits[#],5]]] == 1 &]

A385295 Numbers whose digits all belong to the same residue class mod 6.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 17, 22, 28, 33, 39, 44, 55, 60, 66, 71, 77, 82, 88, 93, 99, 111, 117, 171, 177, 222, 228, 282, 288, 333, 339, 393, 399, 444, 555, 600, 606, 660, 666, 711, 717, 771, 777, 822, 828, 882, 888, 933, 939, 993, 999, 1111, 1117, 1171, 1177, 1711, 1717, 1771, 1777, 2222
Offset: 1

Views

Author

Stefano Spezia, Jun 24 2025

Keywords

Crossrefs

Similar sequences for other values of the modulo k: A059708 (k=2), A385292 (k=3), A385293 (k=4), A385294 (k=5), this sequence (k=6), A385296 (k=7), A385297 (k=8), A385298 (k=9).

Programs

  • Mathematica
    Select[Range[0,2300],Length[DeleteDuplicates[Mod[IntegerDigits[#],6]]] == 1 &]

A385296 Numbers whose digits all belong to the same residue class mod 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 18, 22, 29, 33, 44, 55, 66, 70, 77, 81, 88, 92, 99, 111, 118, 181, 188, 222, 229, 292, 299, 333, 444, 555, 666, 700, 707, 770, 777, 811, 818, 881, 888, 922, 929, 992, 999, 1111, 1118, 1181, 1188, 1811, 1818, 1881, 1888, 2222, 2229, 2292, 2299, 2922, 2929, 2992, 2999
Offset: 1

Views

Author

Stefano Spezia, Jun 24 2025

Keywords

Crossrefs

Similar sequences for other values of the modulo k: A059708 (k=2), A385292 (k=3), A385293 (k=4), A385294 (k=5), A385295 (k=6), this sequence (k=7), A385297 (k=8), A385298 (k=9).

Programs

  • Mathematica
    Select[Range[0,3000],Length[DeleteDuplicates[Mod[IntegerDigits[#],7]]] == 1 &]

A385297 Numbers whose digits all belong to the same residue class mod 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 19, 22, 33, 44, 55, 66, 77, 80, 88, 91, 99, 111, 119, 191, 199, 222, 333, 444, 555, 666, 777, 800, 808, 880, 888, 911, 919, 991, 999, 1111, 1119, 1191, 1199, 1911, 1919, 1991, 1999, 2222, 3333, 4444, 5555, 6666, 7777, 8000, 8008, 8080, 8088, 8800, 8808, 8880, 8888
Offset: 1

Views

Author

Stefano Spezia, Jun 24 2025

Keywords

Crossrefs

Similar sequences for other values of the modulo k: A059708 (k=2), A385292 (k=3), A385293 (k=4), A385294 (k=5), A385295 (k=6), A385296 (k=7), this sequence (k=8), A385298 (k=9).

Programs

  • Mathematica
    Select[Range[0,9000],Length[DeleteDuplicates[Mod[IntegerDigits[#],8]]] == 1 &]

A385298 Numbers whose digits all belong to the same residue class mod 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 90, 99, 111, 222, 333, 444, 555, 666, 777, 888, 900, 909, 990, 999, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9000, 9009, 9090, 9099, 9900, 9909, 9990, 9999, 11111, 22222, 33333, 44444, 55555, 66666, 77777, 88888, 90000, 90009
Offset: 1

Views

Author

Stefano Spezia, Jun 24 2025

Keywords

Crossrefs

Similar sequences for other values of the modulo k: A059708 (k=2), A385292 (k=3), A385293 (k=4), A385294 (k=5), A385295 (k=6), A385296 (k=7), A385297 (k=8), this sequence (k=9).

Programs

  • Mathematica
    Select[Range[0,90000],Length[DeleteDuplicates[Mod[IntegerDigits[#],9]]] == 1 &]
Showing 1-6 of 6 results.