A385329 a(n) = 5^n - 2*4^(n-1)*(n+4) + 3^(n-2)*(n^2+5*n+9).
0, 0, 0, 0, 6, 110, 1220, 10612, 79786, 544434, 3468792, 21012200, 122500334, 693324502, 3833742796, 20809676604, 111288341970, 588046458074, 3076991784512, 15972440574064, 82370489136214, 422506631928510, 2157589903432020, 10977781519321220, 55686118748465786
Offset: 0
Examples
a(4) = 6 since the words are the 6 permutations of aabb. a(5) = 110 since the words are (number of permutations in parentheses): aaabb (10), aabbb (10), aabbc (30), aabbd (30), aabbe (30).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (22,-200,962,-2583,3672,-2160).
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); [0,0,0,0] cat Coefficients(R!((2*x^4*(3 - 11*x)/((1 - 4*x)^2*(1 - 3*x)^3*(1 - 5*x))))); // Vincenzo Librandi, Jul 05 2025 -
Mathematica
LinearRecurrence[{22, -200, 962, -2583, 3672, -2160}, {0, 0, 0, 0, 6, 110, 1220}, 25] (* Amiram Eldar, Jun 28 2025 *)
Formula
E.g.f.: exp(3*x)*(exp(x) - x - 1)^2.
G.f.: 2*x^4*(3 - 11*x)/((1 - 4*x)^2*(1 - 3*x)^3*(1 - 5*x)). - Jinyuan Wang, Jun 26 2025
Comments