A385415 Products of three consecutive integers whose prime divisors are consecutive primes starting at 2.
6, 24, 60, 120, 210, 720, 3360, 9240, 117600, 166320, 970200, 43243200, 85765680
Offset: 1
Examples
a(1) = 6 = 1*2*3 = 2^1 * 3^1. a(2) = 24 = 2*3*4 = 2^3 * 3^1. a(3) = 60 = 3*4*5 = 2^2 * 3^1 * 5^1. a(4) = 120 = 4*5*6 = 2^3 * 3^1 * 5^1. a(5) = 210 = 5*6*7 = 2^1 * 3^1 * 5^1 * 7^1. a(6) = 720 = 8*9*10 = 2^4 * 3^2 * 5^1. ... a(13) = 85765680 = 440*441*442 = 2^4 * 3^2 * 5^1 * 7^2 * 11^1 * 13^1 * 17^1.
Programs
-
Mathematica
Select[(#*(# + 1)*(# + 2)) & /@ Range[500], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* Amiram Eldar, Jun 28 2025 *)
-
Python
from sympy import prime, primefactors def is_pi_complete(n): # Check for complete set of factors = primefactors(n) # prime factors return factors[-1] == prime(len(factors)) def aupto(limit): result = [] for i in range(1, limit+1): n = i * (i+1) * (i+2) if is_pi_complete(n): result.append(n) return result print(aupto(100_000))
Comments