cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A385729 Number of nonnegative values s < n such that (-s) == (-s)^s == s^s (mod n).

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 1, 3, 3, 1, 0, 1, 2, 2, 1, 3, 3, 1, 1, 1, 4, 1, 1, 2, 4, 1, 0, 2, 2, 4, 1, 2, 3, 3, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 1, 0, 3, 5, 2, 1, 2, 6, 3, 1, 1, 4, 3, 1, 3, 4, 2, 1, 1, 3, 2, 3, 3, 4, 1, 1, 1, 4, 4, 2, 3, 3, 2, 1, 1, 2, 3, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 08 2025

Keywords

Crossrefs

Programs

A386409 Number of nonnegative values s < n such that (-s)^s == -s (mod n).

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 2, 4, 3, 4, 3, 7, 5, 5, 6, 6, 4, 6, 4, 9, 8, 5, 2, 13, 4, 8, 3, 9, 4, 14, 3, 6, 7, 8, 12, 11, 3, 7, 10, 17, 5, 16, 6, 9, 10, 5, 2, 19, 7, 8, 10, 13, 3, 6, 11, 18, 11, 7, 3, 27, 5, 7, 14, 10, 16, 17, 5, 13, 7, 21, 4, 21, 5, 6, 14, 12, 12, 21, 5, 27, 6, 11, 3, 29, 16, 10, 9, 19, 4, 23
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 20 2025

Keywords

Crossrefs

Programs

Extensions

a(1) corrected by Andrew Howroyd, Aug 22 2025

A385731 Number of divisors d of n such that (-d) == (-d)^d == d^d (mod n).

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [#[d: d in Divisors(n) | Modexp(d, d, n) eq n-d and Modexp(-d, d, n) eq n-d]: n in [1..100]];
    
  • Mathematica
    a[n_]:=Length[Select[Divisors[n],Mod[-#,n]==PowerMod[-#,#,n]==PowerMod[#,#,n]&]];Array[a,100] (* James C. McMahon, Jul 21 2025 *)
  • PARI
    a(n) = sumdiv(n, d, (-d == Mod(d, n)^d) && (-d == Mod(-d, n)^d)); \\ Michel Marcus, Jul 09 2025

A386410 Smallest k for which A385541(k) = n.

Original entry on oeis.org

1, 2, 66, 30, 1386, 858, 34650, 1287678, 6380946, 11411400, 24877650
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 21 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A386410[n_] := DivisorSum[n, 1 &, PowerMod[#, #, n] == PowerMod[-#, #, n] == Mod[#, n] &]; seq[lim_] := Module[{s = Array[A386410, lim]}, TakeWhile[Flatten[FirstPosition[s, #] & /@ Range[Max[s]]], !MissingQ[#] &]]; seq[10^5] (* Amiram Eldar, Jul 21 2025 *)

Extensions

a(8)-a(11) from Amiram Eldar, Jul 21 2025

A385541 Number of divisors of n such that d^d == (-d)^d == d (mod n).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [1 + #[d: d in [1..n-1] | n mod d eq 0 and Modexp(d,d,n) eq d and Modexp(-d,d,n) eq d]: n in [1..100]];
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, PowerMod[#, #, n] == PowerMod[-#, #, n] == Mod[#, n] &]; Array[a, 100] (* Amiram Eldar, Jul 03 2025 *)
Showing 1-5 of 5 results.