A385605 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n+1,k).
1, 7, 58, 502, 4436, 39687, 358024, 3249288, 29624796, 271080124, 2487835678, 22888216006, 211010997716, 1948830506578, 18026768864736, 166976297995452, 1548523206590364, 14376415735219572, 133599985919343400, 1242638966005222648, 11567295503871866536
Offset: 0
Keywords
Programs
-
PARI
a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n+1, k));
Formula
a(n) = [x^n] 1/((1-3*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(3*n+k,k).
a(n) = 3^(4*n+1)*2^(-3*n-1) - binomial(4*n+1, n)*(hypergeom([1, -1-3*n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((3-2*g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 14 2025
G.f.: B(x)^2/(1 + (B(x)-1)/4), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^2*(12-5*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 16 2025