cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385632 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(5*n+1,k).

Original entry on oeis.org

1, 8, 81, 872, 9669, 109128, 1246419, 14359304, 166512285, 1940885504, 22717923586, 266833238328, 3143237113479, 37119019790016, 439290932937672, 5208668386199112, 61861932606093901, 735804601177846968, 8763478151940329859, 104498114621004830160, 1247410783999193335434
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(5*n+1, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(4*n+1)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(4*n+k,k).
a(n) = 3^(5*n+1)*2^(-4*n-1) - binomial(5*n+1, n)*(hypergeom([1, -1-4*n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((3-2*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 14 2025
From Seiichi Manyama, Aug 16 2025: (Start)
G.f.: 1/(1 - x*g^3*(15-7*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 2*(B(x)-1)/5), where B(x) is the g.f. of A001449. (End)