A385652 Maximum frequency of gpf(k) for 2 <= k <= n, where gpf(k) = A006530(k) is the greatest prime factor of k.
1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12
Offset: 2
Keywords
Examples
| | cumulative frequencies for gpf's | n | gpf | 2 3 5 7 11 13 17 19 23 | a(n) ---+-----+----------------------------------+----- 2 | 2 | 1 0 0 0 0 0 0 0 0 | 1 3 | 3 | 1 1 0 0 0 0 0 0 0 | 1 4 | 2 | 2 1 0 0 0 0 0 0 0 | 2 5 | 5 | 2 1 1 0 0 0 0 0 0 | 2 6 | 3 | 2 2 1 0 0 0 0 0 0 | 2 7 | 7 | 2 2 1 1 0 0 0 0 0 | 2 8 | 2 | 3 2 1 1 0 0 0 0 0 | 3 9 | 3 | 3 3 1 1 0 0 0 0 0 | 3 10 | 5 | 3 3 2 1 0 0 0 0 0 | 3 11 | 11 | 3 3 2 1 1 0 0 0 0 | 3 12 | 3 | 3 4 2 1 1 0 0 0 0 | 4 13 | 13 | 3 4 2 1 1 1 0 0 0 | 4 14 | 7 | 3 4 2 2 1 1 0 0 0 | 4 15 | 5 | 3 4 3 2 1 1 0 0 0 | 4 16 | 2 | 4 4 3 2 1 1 0 0 0 | 4 17 | 17 | 4 4 3 2 1 1 1 0 0 | 4 18 | 3 | 4 5 3 2 1 1 1 0 0 | 5 19 | 19 | 4 5 3 2 1 1 1 1 0 | 5 20 | 5 | 4 5 4 2 1 1 1 1 0 | 5 21 | 7 | 4 5 4 3 1 1 1 1 0 | 5 22 | 11 | 4 5 4 3 2 1 1 1 0 | 5 23 | 23 | 4 5 4 3 2 1 1 1 1 | 5 24 | 3 | 4 6 4 3 2 1 1 1 1 | 6
Links
- Pontus von Brömssen, Table of n, a(n) for n = 2..10000
Programs
-
PARI
gpf(n) = if (n==1,1, vecmax(factor(n)[,1])); \\ A006530 a(n) = my(v=vector(n, k, gpf(k)), s=Set(v)); vecmax(apply(x->#x, vector(#s, i, select(x->(x==s[i]), v)))); \\ Michel Marcus, Jul 06 2025
-
Python
from collections import Counter from itertools import count from sympy import factorint def A385652_generator(): c = Counter() M = 0 for n in count(2): gpf = max(factorint(n)) c[gpf] += 1 if c[gpf] > M: M += 1 yield M
Formula
a(n) = max_{k=2..n} A078899(k).
Comments