A385835 a(n) = 1 + Sum_{k=0..n-1} (1 + k^2) * a(k) * a(n-1-k).
1, 2, 7, 51, 660, 13350, 390886, 15728919, 836469748, 56989647229, 4849599126797, 504709937298467, 63117270187248665, 9344222191368190761, 1616899887657388367640, 323430766605746093449465, 74074314477265886578774322, 19261037812212680097678843345, 5643873902659784713257894768422
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..253
Programs
-
PARI
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, (1+j^2)*v[j+1]*v[i-j])); v;
Formula
G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x*A(x) - x^2 * (d/dx A(x)) - x^3 * (d^2/dx^2 A(x)) ) ).