A385833
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^5) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 3, 104, 25585, 26276091, 82191698776, 639369308538270, 10747798328839679301, 352216100969784522738455, 20799065226839989441184616755, 2079968920938449464603267217930862, 334987314655287149221766445992266495796, 83356568448492338030736248231384628286761124
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^5)*v[j+1]*v[i-j])); v;
A385834
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^6) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 3, 200, 146401, 600098283, 9378336443140, 437583801957155730, 51482609496251191260549, 13496011632930307406903060651, 7172374406405634119759727327588155, 7172395923569361382696722735713532276498, 12706358411963754476880803069979932030145242780
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^6)*v[j+1]*v[i-j])); v;
A385831
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^3) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 3, 32, 961, 64467, 8255248, 1808137854, 625644428013, 322212826476551, 235861774406899499, 236570361788785389414, 315585587694401993913716, 546279374467805677562555764, 1201815582876341559500261276952, 3301389061225358326490572037897646
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^3)*v[j+1]*v[i-j])); v;
A385832
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^4) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 3, 56, 4705, 1218747, 765389596, 994245193386, 2390167881074445, 9797301213263859467, 64309492440202351088387, 643287882516349276270085850, 9420307945482704895570131173916, 195367768417628005309741727943311572, 5580484965405704420901774303244279908840
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^4)*v[j+1]*v[i-j])); v;
A385874
a(n) = 1 + Sum_{k=0..n-1} binomial(k+1,2) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 8, 57, 639, 10357, 229588, 6686619, 248013315, 11425386222, 640413284553, 42933889931191, 3393203732253145, 312268381507616935, 33107736233111305459, 4006699123399932333697, 548987463226205098599755, 84552444466155546810368421, 14544161652321384236939516147
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, binomial(j+1, 2)*v[j+1]*v[i-j])); v;
A385840
a(n) = 1 + Sum_{k=0..n-1} k^2 * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 10, 101, 1733, 45303, 1680907, 84166419, 5475072843, 449157456364, 45377436182152, 5537042709272831, 802969519178558759, 136516626968319610486, 26895468447194766859402, 6078661245454015521843883, 1562271796018872884111521763, 453071380100390505646644605866
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, j^2*v[j+1]*v[i-j])); v;
A385939
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^2) * binomial(n-1,k) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 5, 88, 3893, 352536, 57322537, 15277686880, 6239711818377, 3708478187297920, 3079046917046731661, 3455392385954013825024, 5100835934217411940938685, 9682263835381845999967986688, 23180826149963609282826172967025, 68850271609123855250628849758027776
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j^2)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
A386443
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} k^2 * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 11, 120, 2166, 58642, 2231959, 113926332, 7522541374, 624529876412, 63711767096254, 7837308575551868, 1144321503810951264, 195687862794184808186, 38747465910056072904383, 8795888226933223095245628, 2269380895962602685279019270, 660399219910352767447886420340
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, j^2*v[j+1]*v[i-j])); v;
Showing 1-8 of 8 results.