A385830
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^2) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 3, 20, 241, 4623, 130300, 5100750, 265780029, 17827454651, 1498498011875, 154408489507578, 19151761451917580, 2815820822235814540, 484383420815495253624, 96401320782466194458886, 21981036279413999807199045, 5693391431445001330242504699, 1662538953499888924638316487305
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^2)*v[j+1]*v[i-j])); v;
A385833
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^5) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 3, 104, 25585, 26276091, 82191698776, 639369308538270, 10747798328839679301, 352216100969784522738455, 20799065226839989441184616755, 2079968920938449464603267217930862, 334987314655287149221766445992266495796, 83356568448492338030736248231384628286761124
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^5)*v[j+1]*v[i-j])); v;
A385834
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^6) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 3, 200, 146401, 600098283, 9378336443140, 437583801957155730, 51482609496251191260549, 13496011632930307406903060651, 7172374406405634119759727327588155, 7172395923569361382696722735713532276498, 12706358411963754476880803069979932030145242780
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^6)*v[j+1]*v[i-j])); v;
A385832
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^4) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 3, 56, 4705, 1218747, 765389596, 994245193386, 2390167881074445, 9797301213263859467, 64309492440202351088387, 643287882516349276270085850, 9420307945482704895570131173916, 195367768417628005309741727943311572, 5580484965405704420901774303244279908840
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^4)*v[j+1]*v[i-j])); v;
A385940
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^3) * binomial(n-1,k) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 5, 148, 17189, 5676336, 4326290857, 6602349049360, 18222895109730537, 84299882148193513600, 616234715187848381357261, 6792153358905298302629935104, 108647409624774384033524243233165, 2443481854821246436998727854436139008, 75225062360951292682727255438183855480625
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j^3)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
A386444
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} k^3 * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 19, 550, 36314, 4612644, 1005608259, 346940795318, 178328747938574, 130358697631572620, 130619605078238043630, 174116069712361545382300, 301220935342882714418320660, 662385014999576998657776303368, 1818909557774291764795223960949603, 6142458248209027135766781428841480918
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, j^3*v[j+1]*v[i-j])); v;
Showing 1-6 of 6 results.