cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A385830 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^2) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 3, 20, 241, 4623, 130300, 5100750, 265780029, 17827454651, 1498498011875, 154408489507578, 19151761451917580, 2815820822235814540, 484383420815495253624, 96401320782466194458886, 21981036279413999807199045, 5693391431445001330242504699, 1662538953499888924638316487305
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^2)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) - x^2 * (d/dx A(x)) - x^3 * (d^2/dx^2 A(x)) ).

A385833 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^5) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 3, 104, 25585, 26276091, 82191698776, 639369308538270, 10747798328839679301, 352216100969784522738455, 20799065226839989441184616755, 2079968920938449464603267217930862, 334987314655287149221766445992266495796, 83356568448492338030736248231384628286761124
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^5)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) - x*Sum_{k=1..5} Stirling2(5,k) * x^k * (d^k/dx^k A(x)) ).

A385834 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^6) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 3, 200, 146401, 600098283, 9378336443140, 437583801957155730, 51482609496251191260549, 13496011632930307406903060651, 7172374406405634119759727327588155, 7172395923569361382696722735713532276498, 12706358411963754476880803069979932030145242780
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^6)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) - x*Sum_{k=1..6} Stirling2(6,k) * x^k * (d^k/dx^k A(x)) ).

A385831 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^3) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 3, 32, 961, 64467, 8255248, 1808137854, 625644428013, 322212826476551, 235861774406899499, 236570361788785389414, 315585587694401993913716, 546279374467805677562555764, 1201815582876341559500261276952, 3301389061225358326490572037897646
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^3)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) - x*Sum_{k=1..3} Stirling2(3,k) * x^k * (d^k/dx^k A(x)) ).

A385941 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^4) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 5, 268, 88997, 114813696, 431933720137, 3924557764490560, 75445736579647162857, 2782590090487142758353280, 182621397948270167786531824781, 20092371907364577184989521575079424, 3530551258386563793887714321816262653965, 951815440668013126114976449397609983348430848
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j^4)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( x*A(x) + x*Sum_{k=1..4} Stirling2(4,k) * x^k * (d^k/dx^k A(x)) ).

A386445 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} k^4 * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 35, 2904, 749262, 469791130, 609789812623, 1465325443822620, 6004904311876287022, 39410188505158004325524, 394180711528456847821432318, 5771988198703021102520933624372, 119699491661363792184803354859998664, 3418976586120192927373434641290957978490
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, j^4*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x*Sum_{k=1..4} Stirling2(4,k) * x^k * (d^k/dx^k A(x)) ).
Showing 1-6 of 6 results.