A385843
a(n) = 1 + Sum_{k=0..n-1} k^5 * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 66, 16105, 16507753, 51603272051, 401318681776723, 6745364508844808841, 221038850400001766938953, 13052344129663319516736911260, 1305247465753403752473945799113276, 210212714880649951675343095297590137757, 52307860484508916277278208388919504757392477
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, j^5*v[j+1]*v[i-j])); v;
A385840
a(n) = 1 + Sum_{k=0..n-1} k^2 * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 10, 101, 1733, 45303, 1680907, 84166419, 5475072843, 449157456364, 45377436182152, 5537042709272831, 802969519178558759, 136516626968319610486, 26895468447194766859402, 6078661245454015521843883, 1562271796018872884111521763, 453071380100390505646644605866
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, j^2*v[j+1]*v[i-j])); v;
A385842
a(n) = 1 + Sum_{k=0..n-1} k^4 * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 34, 2789, 716837, 448746495, 582025808335, 1398026940957747, 5727717572863611987, 37585285548218779674700, 375890452313654055440508988, 5503788078310849677217561978523, 114132054134076966886682122559148347, 3259839741208602005078393364829175139526
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, j^4*v[j+1]*v[i-j])); v;
A385875
a(n) = 1 + Sum_{k=0..n-1} binomial(k+2,3) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 10, 111, 2347, 84757, 4837213, 411373408, 49787445476, 8265626303452, 1826809978098228, 524311794034090050, 191377585766768936606, 87269255118865044728501, 48958442598180565027265909, 33340876732769115354996751746, 27239595466972699678481509900786
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, binomial(j+2, 3)*v[j+1]*v[i-j])); v;
Showing 1-4 of 4 results.