cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A385833 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^5) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 3, 104, 25585, 26276091, 82191698776, 639369308538270, 10747798328839679301, 352216100969784522738455, 20799065226839989441184616755, 2079968920938449464603267217930862, 334987314655287149221766445992266495796, 83356568448492338030736248231384628286761124
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j^5)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) - x*Sum_{k=1..5} Stirling2(5,k) * x^k * (d^k/dx^k A(x)) ).

A385838 a(n) = 1 + Sum_{k=0..n-1} (1 + k^5) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 2, 7, 247, 61006, 62715298, 196236522104, 1526720482525833, 25665699044532909262, 841116296816234980686001, 49670440804927429155777517363, 4967242766473223753247263215133503, 799999284003076533259467892632499306811, 199068621859048073152067295737349123675521467
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, (1+j^5)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x*A(x) - x*Sum_{k=1..5} Stirling2(5,k) * x^k * (d^k/dx^k A(x)) ) ).

A385840 a(n) = 1 + Sum_{k=0..n-1} k^2 * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 10, 101, 1733, 45303, 1680907, 84166419, 5475072843, 449157456364, 45377436182152, 5537042709272831, 802969519178558759, 136516626968319610486, 26895468447194766859402, 6078661245454015521843883, 1562271796018872884111521763, 453071380100390505646644605866
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, j^2*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x^2 * (d/dx A(x)) - x^3 * (d^2/dx^2 A(x)) ) ).

A385841 a(n) = 1 + Sum_{k=0..n-1} k^3 * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 18, 505, 32857, 4141211, 898723027, 309170208201, 158606268801081, 115783226426053396, 115899337245305115516, 154378153899481307826141, 266920063540268509322880013, 586690612016923635703423527652, 1610466268575965949949881680290412
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, j^3*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x*Sum_{k=1..3} Stirling2(3,k) * x^k * (d^k/dx^k A(x)) ) ).

A385842 a(n) = 1 + Sum_{k=0..n-1} k^4 * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 34, 2789, 716837, 448746495, 582025808335, 1398026940957747, 5727717572863611987, 37585285548218779674700, 375890452313654055440508988, 5503788078310849677217561978523, 114132054134076966886682122559148347, 3259839741208602005078393364829175139526
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, j^4*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x*Sum_{k=1..4} Stirling2(4,k) * x^k * (d^k/dx^k A(x)) ) ).

A385877 a(n) = 1 + Sum_{k=0..n-1} binomial(k+4,5) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 14, 309, 17637, 2240632, 566921596, 262489646519, 208155482551991, 268104800528280951, 537014337938584568385, 1613191612128443060280697, 7048035233444754041436840277, 43620293298146615746333469478901, 373782307403691698916363133787269075
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, binomial(j+4, 5)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x*Sum_{k=1..5} binomial(4,k-1) * x^k/k! * (d^k/dx^k A(x)) ) ).
Showing 1-6 of 6 results.