cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081876 a(n) is the starting position of the second occurrence of a string of the initial n decimal digits of Pi in the decimal expansion of Pi.

Original entry on oeis.org

9, 137, 2120, 3496, 88008, 176451, 25198140, 50366472, 1660042751, 7902183159, 260816757309, 1142905318634, 17475119650043, 43420162171515
Offset: 1

Views

Author

Harry J. Smith, Apr 12 2003

Keywords

Comments

The digits 3 1 4 1 5 ... are labeled 0, 1, 2, 3, 4, ...
a(9) > 10^8. - Robert G. Wilson v, May 09 2003
a(15) > 50*10^12. - Dmitry Petukhov, Oct 27 2021

References

  • Alfred S. Posamentier & Ingmar Lehmann, A Biography of the World's Most Mysterious Number, Prometheus Books, Amherst, NY 2004, page 134.

Crossrefs

Extensions

a(9) from Felix Fröhlich, Oct 04 2016
a(10)-a(11) from Andreas Stiller, Apr 08 2019
a(12) from Robert G. Wilson v, Oct 21 2004
a(13) from Dmitry Petukhov, Jan 27 2020
a(14) from Dmitry Petukhov, Oct 27 2021

A385937 a(n) is the starting position of the second occurrence of a string of the initial n binary digits of Pi in the binary expansion of Pi.

Original entry on oeis.org

1, 12, 16, 48, 77, 246, 246, 418, 418, 513, 513, 513, 513, 44458, 109628, 201504, 201504, 260229, 260229, 260229, 260229, 5195536, 5195536, 5195536, 16400799, 71861116, 71861116, 71861116, 88885576, 88885576, 465466168, 465466168, 2612839361, 2612839361, 5728737753, 5728737753, 141859217232
Offset: 1

Views

Author

Jason A. Doucette, Jul 12 2025

Keywords

Comments

Digit positions are numbered starting at 0 for the first 1 of binary Pi = 11.001..., then position 1 for integer bit, and so on.
Terms a(1)..a(37) found in first 166096404750 binary digits.
a(38) > 1.66*10^11.

Crossrefs

Cf. A004601 (Pi in binary), A081876 (decimal Pi-inside-Pi), A385936 (hexadecimal Pi-inside-Pi).
Showing 1-2 of 2 results.