cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A385946 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+4,4) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 6, 106, 4176, 316696, 42104392, 9172761368, 3106804304704, 1567537597699840, 1137145604406018176, 1151190083860345401984, 1585522852991230263395584, 2906652632758146061798315776, 6959140466024956612239458880000, 21400639132670591710876896798678016
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, binomial(j+4, 4)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( Sum_{k=0..3} binomial(3,k) * x^(k+1)/(k+1)! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.

A385945 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+3,3) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 5, 63, 1533, 62736, 3969387, 366744330, 47441881377, 8313978813120, 1921417594566561, 572533956456137424, 215766174031503450885, 101144655173329674617088, 58127411808811103704523775, 40435528907318329027426583376, 33666103690446265067517343384833
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, binomial(j+3, 3)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( Sum_{k=0..2} binomial(2,k) * x^(k+1)/(k+1)! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.

A385948 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+6,6) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 8, 246, 21750, 4689546, 2197062708, 2046202234224, 3528088593902364, 10627093734265740672, 53295889303479275834616, 427383379745842299684115608, 5294446934064450139154214169992, 98355143996083993836475641916586304, 2669951662594756888115675117287929721248
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, binomial(j+6, 6)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( Sum_{k=0..5} binomial(5,k) * x^(k+1)/(k+1)! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.

A385954 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+5,5) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 7, 160, 9309, 1193192, 303192604, 140697031749, 111717191583621, 144005113804578040, 288587523313304535136, 867207126292422956078756, 3789698359352103250842742098, 23458242467926487526255374709015, 201037179886862036121457727887328687
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, binomial(j+5, 5)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - Sum_{k=0..5} binomial(5,k) * x^(k+1)/k! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.

A386513 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (1 + k) * binomial(k+4,5) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 3, 61, 5365, 1529521, 1165598707, 2064316175293, 7646264783133257, 54571471797846058921, 702880914451594090404601, 15486578255494092846454504205, 558260219954065540499622238580509, 31707506930744375037184483066962163261, 2747328696602823034266635550466257234352117
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, (1+j)*binomial(j+4, 5)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( x + x*Sum_{k=1..5} binomial(4,k-1) * x^k/k! * (d^k/dx^k A(x)) ).
Showing 1-5 of 5 results.