cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A385946 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+4,4) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 6, 106, 4176, 316696, 42104392, 9172761368, 3106804304704, 1567537597699840, 1137145604406018176, 1151190083860345401984, 1585522852991230263395584, 2906652632758146061798315776, 6959140466024956612239458880000, 21400639132670591710876896798678016
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, binomial(j+4, 4)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( Sum_{k=0..3} binomial(3,k) * x^(k+1)/(k+1)! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.

A385945 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+3,3) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 5, 63, 1533, 62736, 3969387, 366744330, 47441881377, 8313978813120, 1921417594566561, 572533956456137424, 215766174031503450885, 101144655173329674617088, 58127411808811103704523775, 40435528907318329027426583376, 33666103690446265067517343384833
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, binomial(j+3, 3)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( Sum_{k=0..2} binomial(2,k) * x^(k+1)/(k+1)! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.

A385947 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+5,5) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 7, 166, 10029, 1321025, 341733205, 160453080950, 128422430092385, 166469443066352440, 334968718604910165425, 1009644894131844004090200, 4422360688027934597152329025, 27423466157672001507611296316100, 235350249980804930971638499216115775
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, binomial(j+5, 5)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( Sum_{k=0..4} binomial(4,k) * x^(k+1)/(k+1)! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.

A385955 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+6,6) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 8, 239, 20595, 4369086, 2027570077, 1877595433603, 3225737601183428, 9693366952072675847, 48534731177400280613882, 388763324236561973987746008, 4812113062706722698140922709260, 89341696197620005494613697916344217, 2424197647354438894347947373843634554628
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, binomial(j+6, 6)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - Sum_{k=0..6} binomial(6,k) * x^(k+1)/k! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.
Showing 1-4 of 4 results.