A386387 a(n) = Sum_{k=0..n} 4^k * binomial(n,k) * Catalan(k).
1, 5, 41, 429, 5073, 64469, 859385, 11853949, 167763361, 2422342053, 35543185353, 528450589005, 7943934373233, 120537517728117, 1843702988611737, 28397640862311453, 440070304667718465, 6856488470912854853, 107340528355762710377, 1687682549936270584045
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
Programs
-
Magma
[&+[4^k*Binomial(n,k) * Catalan(k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
-
Mathematica
Table[Sum[4^k*Binomial[n,k]*CatalanNumber[k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *) A386387[n_] := Hypergeometric2F1[1/2, -n, 2, -16]; Table[A386387[n], {n, 0, 19}] (* Peter Luschny, Aug 27 2025 *)
-
PARI
a(n) = sum(k=0, n, 4^k*binomial(n, k)*(2*k)!/(k!*(k+1)!));
Formula
G.f.: 2/(1 - x + sqrt((1-x) * (1-17*x))).
G.f. A(x) satisfies A(x) = 1/(1 - x) + 4*x*A(x)^2.
a(n) = 1 + 4 * Sum_{k=0..n-1} a(k) * a(n-1-k).
(n+1)*a(n) = (18*n-8)*a(n-1) - 17*(n-1)*a(n-2) for n > 1.
a(n) ~ 17^(n + 3/2) / (64*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 20 2025
a(n) = hypergeom([1/2, -n], [2], -16). - Peter Luschny, Aug 27 2025