A386443
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} k^2 * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 11, 120, 2166, 58642, 2231959, 113926332, 7522541374, 624529876412, 63711767096254, 7837308575551868, 1144321503810951264, 195687862794184808186, 38747465910056072904383, 8795888226933223095245628, 2269380895962602685279019270, 660399219910352767447886420340
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, j^2*v[j+1]*v[i-j])); v;
A385066
E.g.f. A(x) satisfies A(x) = exp(x + x^3*A''(x)).
Original entry on oeis.org
1, 1, 1, 7, 193, 12481, 1570201, 340513321, 117098181313, 60060238918849, 43839052690362481, 43879747204367814961, 58445034533293136385361, 101048138430710700967252945, 222098609829790469135187472009, 609650270727758340550662998605801, 2058153076335502227178904191401488641
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, (1+j)*sum(k=1, 2, stirling(2, k, 1)*j^k)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
A386449
G.f. A(x) satisfies A(x) = 1/(1 - x - x^4*A'''(x)).
Original entry on oeis.org
1, 1, 1, 1, 7, 181, 11215, 1368049, 290015209, 98023774645, 49599740115757, 35810914359761065, 35524377449180431975, 46963191178201310535625, 80682726920407341929523811, 176372394085267937467487988481, 481849299958664384125278899595601, 1619977170089211596368385150640702601
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 3, stirling(3, k, 1)*j^k)*v[j+1]*v[i-j])); v;
A386450
G.f. A(x) satisfies A(x) = 1/(1 - x - x^5*A''''(x)).
Original entry on oeis.org
1, 1, 1, 1, 1, 25, 3049, 1103713, 929323297, 1563120681841, 4730002253928145, 23848669801185169825, 188929157434986723256801, 2244856224793842495701519113, 38526222340982767558002054899641, 925631015719595748793089592291450945, 30325523298479173582153602405524578371265
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 4, stirling(4, k, 1)*j^k)*v[j+1]*v[i-j])); v;
A386451
G.f. A(x) satisfies A(x) = 1/(1 - x - x^6*A'''''(x)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 121, 87361, 220324321, 1481019998401, 22395984195495601, 677299352559157967041, 37550830682188851813205921, 3568906049019293501471580099841, 551188987985086896272084982413188201, 132418744847944340085178947237195978556801, 47718683730343729293790168893699493431209021761
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 5, stirling(5, k, 1)*j^k)*v[j+1]*v[i-j])); v;
Showing 1-5 of 5 results.