cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386448 G.f. A(x) satisfies A(x) = 1/(1 - x - x^3*A''(x)).

Original entry on oeis.org

1, 1, 1, 3, 23, 319, 6999, 223725, 9838405, 570440733, 42203958765, 3882243620535, 434771830226307, 58255737747374083, 9203989127308306571, 1693477639607917108953, 359008305377998952818761, 86878355403079952880852217, 23804317478591173659253678809, 7331644401028481860472940727371
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 2, stirling(2, k, 1)*j^k)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (-k + k^2) * a(k) * a(n-1-k).

A386449 G.f. A(x) satisfies A(x) = 1/(1 - x - x^4*A'''(x)).

Original entry on oeis.org

1, 1, 1, 1, 7, 181, 11215, 1368049, 290015209, 98023774645, 49599740115757, 35810914359761065, 35524377449180431975, 46963191178201310535625, 80682726920407341929523811, 176372394085267937467487988481, 481849299958664384125278899595601, 1619977170089211596368385150640702601
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 3, stirling(3, k, 1)*j^k)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (2*k - 3*k^2 + k^3) * a(k) * a(n-1-k).

A386451 G.f. A(x) satisfies A(x) = 1/(1 - x - x^6*A'''''(x)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 121, 87361, 220324321, 1481019998401, 22395984195495601, 677299352559157967041, 37550830682188851813205921, 3568906049019293501471580099841, 551188987985086896272084982413188201, 132418744847944340085178947237195978556801, 47718683730343729293790168893699493431209021761
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 5, stirling(5, k, 1)*j^k)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (24*k - 50*k^2 + 35*k^3 - 10*k^4 + k^5) * a(k) * a(n-1-k).

A386503 E.g.f. A(x) satisfies A(x) = exp(x + x^5*A''''(x)).

Original entry on oeis.org

1, 1, 1, 1, 1, 121, 87841, 221971681, 1493423016961, 22593988839985921, 683468095232158346881, 37898988106295372711276161, 3602374572375663444650415755521, 556397556871212729711470761587498241, 133676738300734051631377763872501373230081, 48173754506706929414138973409107160269088573441
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, (1+j)*sum(k=1, 4, stirling(4, k, 1)*j^k)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (1 + k) * (-6*k + 11*k^2 - 6*k^3 + k^4) * binomial(n-1,k) * a(k) * a(n-1-k).
a(n) == 1 (mod 120). - Hugo Pfoertner, Jul 24 2025
Showing 1-4 of 4 results.