cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386448 G.f. A(x) satisfies A(x) = 1/(1 - x - x^3*A''(x)).

Original entry on oeis.org

1, 1, 1, 3, 23, 319, 6999, 223725, 9838405, 570440733, 42203958765, 3882243620535, 434771830226307, 58255737747374083, 9203989127308306571, 1693477639607917108953, 359008305377998952818761, 86878355403079952880852217, 23804317478591173659253678809, 7331644401028481860472940727371
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 2, stirling(2, k, 1)*j^k)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (-k + k^2) * a(k) * a(n-1-k).

A386449 G.f. A(x) satisfies A(x) = 1/(1 - x - x^4*A'''(x)).

Original entry on oeis.org

1, 1, 1, 1, 7, 181, 11215, 1368049, 290015209, 98023774645, 49599740115757, 35810914359761065, 35524377449180431975, 46963191178201310535625, 80682726920407341929523811, 176372394085267937467487988481, 481849299958664384125278899595601, 1619977170089211596368385150640702601
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 3, stirling(3, k, 1)*j^k)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (2*k - 3*k^2 + k^3) * a(k) * a(n-1-k).

A386450 G.f. A(x) satisfies A(x) = 1/(1 - x - x^5*A''''(x)).

Original entry on oeis.org

1, 1, 1, 1, 1, 25, 3049, 1103713, 929323297, 1563120681841, 4730002253928145, 23848669801185169825, 188929157434986723256801, 2244856224793842495701519113, 38526222340982767558002054899641, 925631015719595748793089592291450945, 30325523298479173582153602405524578371265
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 4, stirling(4, k, 1)*j^k)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (-6*k + 11*k^2 - 6*k^3 + k^4) * a(k) * a(n-1-k).

A386504 E.g.f. A(x) satisfies A(x) = exp(x + x^6*A'''''(x)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 721, 3638881, 73388931841, 4439222967191041, 671254901566891891201, 223293614016982999277652481, 148555455012284806644741491166721, 183545166980276574090600617506568885761, 396856587856894056179855967245699021196188161, 1430118352830649099320069857966516939680956145171201
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, (1+j)*sum(k=1, 5, stirling(5, k, 1)*j^k)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (1 + k) * (24*k - 50*k^2 + 35*k^3 - 10*k^4 + k^5) * binomial(n-1,k) * a(k) * a(n-1-k).
a(n) == 1 (mod 720). - Hugo Pfoertner, Jul 24 2025
Showing 1-4 of 4 results.