A386521 Integers w such that the Diophantine equation x^2 + y^3 + z^4 = w^5 with GCD(x,y,z)=1 has no positive integer solutions.
1, 3, 4, 5, 6, 10, 13, 22, 27, 34, 36, 42, 43, 47, 62, 72, 76, 87, 95, 102, 111, 183, 251, 279, 315, 322, 327, 344, 483, 490, 528, 615, 708, 762, 1170, 1302, 2295, 2526, 3282, 3382, 6012
Offset: 1
Examples
9 is not a term because 9^5 = x^2 + y^3 + z^4 where GCD(x,y,z)=1 has 5 positive integer solutions: {220,22,1}, {64,38,3}, {241,7,5}, {9,38,8}, {118,29,12}.
Programs
-
Mathematica
f[w_]:=(c=0;zz=w^5;Do[yy=zz-z^4;Do[xx=yy-y^3;x=Sqrt@xx; If[IntegerQ@x,If[GCD[x,y,z]==1,c++]],{y,Floor[yy^(1/3)]}],{z,Floor[zz^(1/4)]}];c);Select[Range@50,f@#==0&]
Extensions
a(41) from Giovanni Resta, Aug 12 2025
Comments