cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386676 Triangle of denominators for rational convergents to Taylor series of 1/Gamma(x+1).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 36, 12, 9, 1, 288, 192, 288, 192, 1, 7200, 576, 1440, 2880, 1800, 1, 5400, 51840, 11520, 103680, 172800, 103680, 1, 264600, 259200, 1209600, 103680, 44800, 3628800, 2116800, 1, 33868800, 58060800, 58060800, 3686400, 29030400, 4300800, 406425600, 232243200
Offset: 0

Views

Author

David Ulgenes, Jul 28 2025

Keywords

Comments

T(n, k) is the denominator of the k-th coefficient in a degree n polynomial approximation to 1/Gamma(x+1) with rational coefficients.
That is, 1/Gamma(x+1) ~ Sum_{j=0..n} A386675(n, j) * x^j / A386676(n, j) which is exact as lim_{n->oo}.

Examples

			The full triangle is
  1;
  1, 0;
  1, 1/4, -1/4;
  1, 17/36, -7/12, 1/9;
  1, 181/288, -167/192, 77/288, -5/192;
  1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
  1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
  ...
Thus, for example, a degree 3 approximation is 1/Gamma(x+1) ~ 1 + 17/36x - 7/12x^2 + 1/9x^3. Therefore, T(3, 1) = 36, T(3, 2) = 12, etc.
		

Crossrefs

Cf. A386675.

Programs

  • Mathematica
    T[n_, k_] := Denominator[Sum[(-1)^j * StirlingS1[j, k] * LaguerreL[j, 1] / j!,{j, 0, n}]]
    maxN = 10;
    Table[T[n, k], {n, 0, maxN}, {k, 0, n}]
  • PARI
    T(n, k) = denominator( sum(j=0, n, (-1)^j * stirling(j, k, 1) * pollaguerre(j,,1)/j!)); \\ Michel Marcus, Aug 02 2025

Formula

T(n, k) = denominator( Sum_{j=0..n} (-1)^j * Stirling1(j, k) * Lag(j, 1)/j! ) where Lag(n, x) is the Laguerre polynomial. Proof: Apply Newton's Forward Difference Formula to f(n) = 1/n!. Use the identity x * (x-1) * ... * (x - n + 1) = Sum_{k=0..n} Stirling1(n, k) * x^k and interchange the order of summation.