cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386918 a(n) = 2^n * binomial(4*n,n).

Original entry on oeis.org

1, 8, 112, 1760, 29120, 496128, 8614144, 151557120, 2692684800, 48201359360, 868004380672, 15706806542336, 285362317180928, 5202031080243200, 95104728494899200, 1743063914667048960, 32016101348447354880, 589188508080622534656, 10861173739509105295360
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [2^n * Binomial(4*n,n): n in [0..26]]; // Vincenzo Librandi, Aug 11 2025
  • Mathematica
    Table[2^n*Binomial[4*n,n],{n,0,30}] (* Vincenzo Librandi, Aug 11 2025 *)
  • PARI
    a(n) = 2^n*binomial(4*n, n);
    

Formula

a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(4*n-k,n-k).
a(n) = [x^n] (1+x)^(4*n)/(1-x)^(3*n+1).
a(n) = [x^n] 1/(1-2*x)^(3*n+1).
a(n) = [x^n] (1+2*x)^(4*n).

A386919 a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 6, 58, 624, 7050, 81926, 969640, 11624976, 140708682, 1715727090, 21043480458, 259331888712, 3208566672792, 39830312782344, 495853462219600, 6188170518911264, 77393543796042570, 969771226630919754, 12172039459124750062, 153006230384961477600, 1925930502301667496250
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(4*n,k) * Binomial(2*n-k,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 10 2025
  • Mathematica
    Table[Sum[Binomial[4*n,k]*Binomial[2*n-k,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 10 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n, k)*binomial(2*n-k, n-k));
    

Formula

a(n) = [x^n] (1+x)^(4*n)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x)^(2*n) * (1-2*x)^(n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n,k) * binomial(3*n-k-1,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k,k) * binomial(3*n-k-1,n-k).
Showing 1-2 of 2 results.