A386951 Intersection of A025487 and A007531.
6, 24, 60, 120, 210, 720, 3360, 9240, 166320, 970200, 43243200
Offset: 1
Examples
a(1) = 6 = 1*2*3 = 2^1 * 3^1. a(2) = 24 = 2*3*4 = 2^3 * 3^1. a(3) = 60 = 3*4*5 = 2^2 * 3^1 * 5^1. a(4) = 120 = 4*5*6 = 2^3 * 3^1 * 5^1. a(5) = 210 = 5*6*7 = 2^1 * 3^1 * 5^1 * 7^1. a(6) = 720 = 8*9*10 = 2^4 * 3^2 * 5^1.
Programs
-
Mathematica
Select[FactorialPower[Range[0, 1000], 3], (Max@ Differences[(f = FactorInteger[#])[[;; , 2]]] < 1 && f[[-1, 1]] == Prime[Length[f]]) &] (* Amiram Eldar, Aug 10 2025 *)
-
Python
from sympy import prime, factorint def is_Hardy_Ramanujan(n): factors = factorint(n) p_idx = len(factors) if list(factors.keys())[-1] != prime(p_idx): return False expos = list(factors.values()) e = expos[0] for i in range(1, p_idx): if expos[i] > e: return False e = expos[i] return True print([ n*(n+1)*(n+2) for n in range(1, 1000) if is_Hardy_Ramanujan(n*(n+1)*(n+2))])
Comments