A377011
a(n) = Sum_{k=0..n} 3^k * binomial(2*n+1,n-k).
Original entry on oeis.org
1, 6, 34, 188, 1026, 5556, 29940, 160824, 862018, 4613636, 24667644, 131795912, 703812916, 3757135752, 20051429544, 106992663408, 570827898306, 3045193326372, 16244056119084, 86646747723048, 462161936699196, 2465043081687192, 13147597801986264, 70123266087502608
Offset: 0
-
[&+[3^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Table[Sum[3^k * Binomial[2*n+1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
-
a(n) = sum(k=0, n, 3^k*binomial(2*n+1, n-k));
A386956
a(n) = Sum_{k=0..n} (k+1) * 8^k * binomial(2*n+1,n-k).
Original entry on oeis.org
1, 19, 282, 3763, 47294, 571950, 6733668, 77723187, 883589238, 9924844474, 110396411372, 1218075749934, 13348677037868, 145438914042172, 1576690043132376, 17018212213758771, 182983432175308710, 1960781840268630786, 20947171352106580284, 223169444039365834362
Offset: 0
-
[&+[(k+1) * 8^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Table[Sum[(k+1) * 8^k*Binomial[2*n+1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
-
a(n) = sum(k=0, n, (k+1)*8^k*binomial(2*n+1, n-k));
A387085
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(2*n+1,k).
Original entry on oeis.org
1, 0, 4, 8, 36, 120, 456, 1680, 6340, 23960, 91224, 348656, 1337896, 5149872, 19877904, 76907808, 298176516, 1158168792, 4505865144, 17555689008, 68490100536, 267518448912, 1046041377264, 4094231982048, 16039426479336, 62887835652720, 246761907761776, 968943740083040
Offset: 0
-
[&+[(-3)^(n-k) * Binomial(2*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
-
Table[Sum[(-3)^(n-k)*Binomial[2*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
-
a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*n+1, k));
A386958
a(n) = Sum_{k=0..n} 8^k * binomial(k-2/3,k) * binomial(2*n+1/3,n-k).
Original entry on oeis.org
1, 5, 33, 248, 2020, 17325, 153699, 1395084, 12868839, 120127865, 1131633217, 10737438816, 102480890512, 982880111192, 9465545374920, 91479218990688, 886803360846876, 8619761335490460, 83982810424366860, 819973263265010400, 8020986875021209320
Offset: 0
-
Table[Sum[8^k*Binomial[k-2/3,k]*Binomial[2*n+1/3, n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Sep 03 2025 *)
-
a(n) = sum(k=0, n, 8^k*binomial(k-2/3, k)*binomial(2*n+1/3, n-k));
A386986
a(n) = Sum_{k=0..n} (k+1) * 8^k * binomial(2*n+2,n-k).
Original entry on oeis.org
1, 20, 303, 4088, 51730, 628488, 7423899, 85904688, 978506478, 11008191800, 122603713078, 1354213651728, 14854030654372, 161966063719712, 1757042561230515, 18976059641899872, 204140891541240918, 2188510439907779064, 23389705325379996834, 249285017279237071440
Offset: 0
-
[&+[(k+1)*8^k * Binomial(2*n+2, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 14 2025
-
Table[Sum[(k+1)* 8^k*Binomial[2*n+2,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 14 2025 *)
-
a(n) = sum(k=0, n, (k+1)*8^k*binomial(2*n+2, n-k));
Showing 1-5 of 5 results.