A387085 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(2*n+1,k).
1, 0, 4, 8, 36, 120, 456, 1680, 6340, 23960, 91224, 348656, 1337896, 5149872, 19877904, 76907808, 298176516, 1158168792, 4505865144, 17555689008, 68490100536, 267518448912, 1046041377264, 4094231982048, 16039426479336, 62887835652720, 246761907761776, 968943740083040
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
[&+[(-3)^(n-k) * Binomial(2*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
-
Mathematica
Table[Sum[(-3)^(n-k)*Binomial[2*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
-
PARI
a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*n+1, k));
Formula
a(n) = [x^n] (1+x)^(2*n+1)/(1+3*x).
a(n) = [x^n] 1/((1-x)^(n+1) * (1+2*x)).
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} (-2)^k * binomial(2*n-k,n-k).
G.f.: 1/( 4*x - 1 + 2*sqrt(1 - 4*x) ).
G.f.: 1/(1 - 4*x*(-1+g)) where g = 1+x*g^2 is the g.f. of A000108.
G.f.: g^2/((-2+3*g) * (2-g)) where g = 1+x*g^2 is the g.f. of A000108.
G.f.: B(x)^2/(1 + 2*(B(x)-1)), where B(x) is the g.f. of A000984.
D-finite with recurrence 3*n*a(n) +2*(-4*n+3)*a(n-1) +8*(-2*n+1)*a(n-2)=0. - R. J. Mathar, Aug 19 2025