cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A387228 Expansion of sqrt((1-x) / (1-5*x)^5).

Original entry on oeis.org

1, 12, 103, 764, 5215, 33728, 210021, 1271504, 7532547, 43859460, 251809701, 1428911652, 8028877233, 44734340784, 247433518875, 1359902816880, 7432212863235, 40416897046740, 218812616979845, 1179889937796900, 6339243523221245, 33947223885549040, 181245459484155935
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- x) / (1-5*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 24 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-5*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 24 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-x)/(1-5*x)^5))
    

Formula

n*a(n) = (6*n+6)*a(n-1) - 5*n*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n+1,n-k).
a(n) ~ 8 * 5^(n - 1/2) * n^(3/2) / (3*sqrt(Pi)). - Vaclav Kotesovec, Aug 23 2025

A387230 Expansion of sqrt((1-x) / (1-13*x)^5).

Original entry on oeis.org

1, 32, 723, 14044, 250415, 4224732, 68565049, 1081299296, 16679767923, 252819395920, 3777709472537, 55782986878164, 815526073468561, 11821376147023268, 170096339292264375, 2431786467331116016, 34569517907583692867, 488963045591838160848, 6885041951078984405449
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- x) / (1-13*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-13*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sqrt((1-x)/(1-13*x)^5))
    

Formula

n*a(n) = (14*n+18)*a(n-1) - 13*n*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 13^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 3^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} (-3)^k * 13^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n+1,n-k).
a(n) ~ 8 * n^(3/2) * 13^(n - 1/2) / sqrt(3*Pi). - Vaclav Kotesovec, Aug 24 2025

A387313 Expansion of 1/((1-x) * (1-9*x))^(5/2).

Original entry on oeis.org

1, 25, 415, 5775, 72870, 864150, 9818130, 108109650, 1162302735, 12262882775, 127424209913, 1307536637225, 13276264807260, 133597932407100, 1334029357684980, 13231465264538100, 130461712570627245, 1279632533997010725, 12492837802976030115, 121456026730456739475
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-9*x))^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-9*x))^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/((1-x)*(1-9*x))^(5/2))
    

Formula

n*a(n) = (10*n+15)*a(n-1) - 9*(n+3)*a(n-2) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-5/2,k) * binomial(-5/2,n-k).
a(n) = Sum_{k=0..n} (-8)^k * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = Sum_{k=0..n} 8^k * 9^(n-k) * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = (binomial(n+4,2)/6) * A387307(n).
a(n) = (-1)^n * Sum_{k=0..n} 10^k * (9/10)^(n-k) * binomial(-5/2,k) * binomial(k,n-k).
Showing 1-3 of 3 results.