cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A387228 Expansion of sqrt((1-x) / (1-5*x)^5).

Original entry on oeis.org

1, 12, 103, 764, 5215, 33728, 210021, 1271504, 7532547, 43859460, 251809701, 1428911652, 8028877233, 44734340784, 247433518875, 1359902816880, 7432212863235, 40416897046740, 218812616979845, 1179889937796900, 6339243523221245, 33947223885549040, 181245459484155935
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- x) / (1-5*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 24 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-5*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 24 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-x)/(1-5*x)^5))
    

Formula

n*a(n) = (6*n+6)*a(n-1) - 5*n*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n+1,n-k).
a(n) ~ 8 * 5^(n - 1/2) * n^(3/2) / (3*sqrt(Pi)). - Vaclav Kotesovec, Aug 23 2025

A387229 Expansion of sqrt((1-x) / (1-9*x)^5).

Original entry on oeis.org

1, 22, 343, 4604, 56765, 662450, 7438515, 81174840, 866564025, 9090485390, 94014360143, 960890353076, 9723664642549, 97564323687082, 971756818248235, 9616894723897200, 94635806917660785, 926607762721058310, 9032093873432341575, 87685949210949054060, 848182216775168898861
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- x) / (1-9*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-9*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-x)/(1-9*x)^5))
    

Formula

n*a(n) = (10*n+12)*a(n-1) - 9*n*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 2^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} (-2)^k * 9^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n+1,n-k).
a(n) ~ 2^(7/2) * n^(3/2) * 3^(2*n-2) / sqrt(Pi). - Vaclav Kotesovec, Aug 24 2025

A387315 Expansion of 1/((1-x) * (1-13*x))^(5/2).

Original entry on oeis.org

1, 35, 825, 16415, 297220, 5067972, 82893720, 1315073760, 20381376015, 310101196405, 4648184007467, 68817616687365, 1008344472704660, 14644604899082620, 211073938188085620, 3022082811670829676, 43017189132931007655, 609159438493806780405, 8586490781973282553375
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-13*x))^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-13*x))^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/((1-x)*(1-13*x))^(5/2))
    

Formula

n*a(n) = (14*n+21)*a(n-1) - 13*(n+3)*a(n-2) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 13^k * binomial(-5/2,k) * binomial(-5/2,n-k).
a(n) = Sum_{k=0..n} (-12)^k * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = Sum_{k=0..n} 12^k * 13^(n-k) * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = (binomial(n+4,2)/6) * A387310(n).
a(n) = (-1)^n * Sum_{k=0..n} 14^k * (13/14)^(n-k) * binomial(-5/2,k) * binomial(k,n-k).
Showing 1-3 of 3 results.