cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387235 Decimal expansion of 2*log(2)/3.

Original entry on oeis.org

4, 6, 2, 0, 9, 8, 1, 2, 0, 3, 7, 3, 2, 9, 6, 8, 7, 2, 9, 4, 4, 8, 2, 1, 4, 1, 4, 3, 0, 5, 4, 5, 1, 0, 4, 5, 3, 8, 3, 6, 6, 6, 7, 5, 6, 2, 4, 0, 1, 7, 0, 1, 6, 9, 4, 1, 3, 7, 8, 6, 6, 7, 2, 9, 9, 5, 5, 9, 5, 7, 4, 7, 9, 7, 9, 7, 9, 6, 4, 7, 7, 0, 7, 0, 5, 7, 5, 5, 5, 1, 3, 3, 0, 9, 4, 5, 7, 9, 1, 6
Offset: 0

Views

Author

Stefano Spezia, Aug 23 2025

Keywords

Comments

Area enclosed by the curve of the equation x^6 + y^6 - x^3*y + x*y^3 = 0.
The asymptotic mean of A256232. - Amiram Eldar, Aug 23 2025

Examples

			0.46209812037329687294482141430545104538366675624...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2Log[2]/3,10,100][[1]]

Formula

Equals log(4)/3 = A010701*A016627.
Equals Sum_{k>=0} (-1)^k/((3*k + 1)*(3*k + 2)) = Integral_{x=0..1} x^2*log(1 + 1/x^3) = -Integral_{x=0..1} log[1 - x^6]/x^4. [Shamos]
Equals A016627/3 = 2*A193535. - Hugo Pfoertner, Aug 23 2025