cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A387273 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n+3,k+3) * binomial(2*k+6,k+6).

Original entry on oeis.org

1, 16, 165, 1400, 10661, 75936, 517524, 3420960, 22123530, 140782048, 885008839, 5511579528, 34073731965, 209428887360, 1281220578936, 7808422173120, 47440778110398, 287490594872160, 1738463164498410, 10493677382085744, 63245915436539682, 380697445274657984
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^(n-k) * Binomial(n+3,k+3) * Binomial(2*k+6,k+6): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[n+3,k+3]*Binomial[2*k+6,k+6],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(n+3, k+3)*binomial(2*k+6, k+6));
    

Formula

n*(n+6)*a(n) = (n+3) * (4*(2*n+5)*a(n-1) - 12*(n+2)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k) * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = [x^n] (1+4*x+x^2)^(n+3).
E.g.f.: exp(4*x) * BesselI(3, 2*x), with offset 3.

A387275 a(n) = Sum_{k=0..n} 3^(n-k) * binomial(n+2,k+2) * binomial(2*k+4,k+4).

Original entry on oeis.org

1, 15, 154, 1350, 10890, 83650, 623056, 4547520, 32735085, 233369675, 1652203542, 11638252730, 81674873553, 571575363975, 3991529920440, 27829484027400, 193791573179883, 1348196149698885, 9372495529924710, 65120144658997050, 452263192928596896
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^(n-k) * Binomial(n+2,k+2) * Binomial(2*k+4,k+4): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[3^(n-k)*Binomial[n+2,k+2]*Binomial[2*k+4,k+4],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*binomial(n+2, k+2)*binomial(2*k+4, k+4));
    

Formula

n*(n+4)*a(n) = (n+2) * (5*(2*n+3)*a(n-1) - 21*(n+1)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k) * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = [x^n] (1+5*x+x^2)^(n+2).
E.g.f.: exp(5*x) * BesselI(2, 2*x), with offset 2.
a(n) ~ 7^(n + 5/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 31 2025

A387277 a(n) = Sum_{k=0..n} 3^(n-k) * binomial(n+4,k+4) * binomial(2*k+8,k+8).

Original entry on oeis.org

1, 25, 381, 4585, 47978, 458010, 4100370, 35027850, 288845370, 2317794050, 18203687502, 140533725150, 1069904389008, 8052575725680, 60033791987424, 444015014417280, 3261950250436845, 23827019766988725, 173193081555808545, 1253583401573658925, 9040278899072328006
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^(n-k) * Binomial(n+4,k+4) * Binomial(2*k+8,k+8): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 30 2025
  • Mathematica
    Table[Sum[3^(n-k)*Binomial[n+4,k+4]*Binomial[2*k+8,k+8],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*binomial(n+4, k+4)*binomial(2*k+8, k+8));
    

Formula

n*(n+8)*a(n) = (n+4) * (5*(2*n+7)*a(n-1) - 21*(n+3)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k) * binomial(n+4,n-2*k) * binomial(2*k+4,k).
a(n) = [x^n] (1+5*x+x^2)^(n+4).
E.g.f.: exp(5*x) * BesselI(4, 2*x), with offset 4.

A387278 a(n) = Sum_{k=0..n} 3^(n-k) * binomial(n+1,k+1) * binomial(2*k+2,k+2).

Original entry on oeis.org

1, 10, 78, 560, 3885, 26550, 180285, 1221400, 8272251, 56062550, 380361212, 2583867720, 17575724491, 119705522370, 816297170310, 5572945684800, 38088275031435, 260576833989150, 1784382167211378, 12229792774162800, 83888652677196591, 575858959975595010
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^(n-k) * Binomial(n+1,k+1) * Binomial(2*k+2,k+2): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 30 2025
  • Mathematica
    Table[Sum[3^(n-k)*Binomial[n+1,k+1]*Binomial[2*k+2,k+2],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*binomial(n+1, k+1)*binomial(2*k+2, k+2));
    

Formula

n*(n+2)*a(n) = (n+1) * (5*(2*n+1)*a(n-1) - 21*n*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = [x^n] (1+5*x+x^2)^(n+1).
E.g.f.: exp(5*x) * BesselI(1, 2*x), with offset 1.

A387284 Expansion of 1/((1-3*x) * (1-7*x))^(7/2).

Original entry on oeis.org

1, 35, 714, 11130, 147126, 1739430, 18977574, 194933310, 1910889981, 18049106075, 165420791536, 1478846110560, 12948121954404, 111381159472380, 943685046652536, 7890986412386280, 65229211294855839, 533768263527907485, 4328710275989203566, 34823868658927020750
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/((1-3*x) * (1-7*x))^(7/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 26 2025
  • Mathematica
    CoefficientList[Series[1/((1-3x)*(1-7*x))^(7/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 26 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/((1-3*x)*(1-7*x))^(7/2))
    

Formula

n*a(n) = (10*n+25)*a(n-1) - 21*(n+5)*a(n-2) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 7^k * 3^(n-k) * binomial(-7/2,k) * binomial(-7/2,n-k).
a(n) = Sum_{k=0..n} (-4)^k * 3^(n-k) * binomial(-7/2,k) * binomial(n+6,n-k).
a(n) = Sum_{k=0..n} 4^k * 7^(n-k) * binomial(-7/2,k) * binomial(n+6,n-k).
a(n) = (binomial(n+6,3)/20) * A387276(n).
a(n) = (-1)^n * Sum_{k=0..n} 10^k * (21/10)^(n-k) * binomial(-7/2,k) * binomial(k,n-k).
Showing 1-5 of 5 results.