cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387309 a(n) = Sum_{k=0..n} 3^k * binomial(n+1,k+1) * binomial(2*k+2,k+2).

Original entry on oeis.org

1, 14, 174, 2128, 26045, 320082, 3951493, 48987848, 609592347, 7610525650, 95287524332, 1196054790168, 15046318739803, 189654839753750, 2394743468261190, 30285593026553536, 383554551776056139, 4863775493104574634, 61748210178809072722, 784757334938247965840, 9983152795673915802399
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^k * Binomial(n+1,k+1) * Binomial(2*k+2,k+2): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 30 2025
  • Mathematica
    Table[Sum[3^k*Binomial[n+1,k+1]*Binomial[2*k+2,k+2],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*binomial(n+1, k+1)*binomial(2*k+2, k+2));
    

Formula

G.f.: ((1-7*x)/sqrt((1-x) * (1-13*x)) - 1)/(18*x^2).
n*(n+2)*a(n) = (n+1) * (7*(2*n+1)*a(n-1) - 13*n*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 9^k * 7^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = [x^n] (1+7*x+9*x^2)^(n+1).
E.g.f.: exp(7*x) * BesselI(1, 6*x) / 3, with offset 1.