cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387480 a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(k,n-k)^2.

Original entry on oeis.org

1, 3, 15, 99, 603, 3807, 24759, 162243, 1072683, 7147359, 47887767, 322330995, 2178055899, 14765637663, 100380161655, 684061007139, 4671543976587, 31962145170015, 219043736154711, 1503380943222867, 10332034575214779, 71092843087100319, 489712662842798007
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^k * 2^(n-k) * Binomial(k, n-k)^2: k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[3^k*2^(n-k)*Binomial[k,n-k]^2,{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*2^(n-k)*binomial(k, n-k)^2);
    

Formula

G.f.: 1/sqrt((1-3*x-6*x^2)^2 - 72*x^3).