cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108480 Expansion of (1-x-2*x^2)/(1-2*x-3*x^2-4*x^3+4*x^4).

Original entry on oeis.org

1, 1, 3, 13, 35, 117, 379, 1197, 3859, 12357, 39563, 126845, 406371, 1302101, 4172443, 13369293, 42838835, 137266917, 439837739, 1409354397, 4515934339, 14470215157, 46366299963, 148569565165, 476055153491, 1525403341701
Offset: 0

Views

Author

Paul Barry, Jun 04 2005

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x-2*x^2)/(1-2*x-3*x^2-4*x^3+4*x^4), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
    LinearRecurrence[{2,3,4,-4},{1,1,3,13},30] (* Harvey P. Dale, Aug 29 2023 *)

Formula

a(n) = 2*a(n-1) + 3*a(n-2) + 4*a(n-3) - 4*a(n-4).
a(n) = Sum_{k=0..floor(n/2)} C(2*(n-k), 2k) * 2^k.
a(n) ~ (1+sqrt((4*sqrt(2)-1)/31)) * (1+2*sqrt(2)+sqrt(1+4*sqrt(2)))^n/2^(n+2). - Vaclav Kotesovec, Jul 24 2013

A387623 a(n) = Sum_{k=0..floor(n/4)} 2^k * binomial(2*n-6*k,2*k).

Original entry on oeis.org

1, 1, 1, 1, 3, 13, 31, 57, 95, 193, 463, 1081, 2295, 4609, 9423, 20185, 44071, 94801, 199807, 418921, 885879, 1889889, 4034639, 8573561, 18155399, 38461105, 81665695, 173627401, 368961431, 783201921, 1661811055, 3527298329, 7490519335, 15908549329, 33779968447
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^k* Binomial(2*n-6*k, 2*k): k in [0..Floor (n/4)]]: n in [0..30]]; // Vincenzo Librandi, Sep 05 2025
  • Mathematica
    Table[Sum[2^k*Binomial[2*n-6*k,2*k],{k,0,Floor[n/4]}],{n,0,40}] (* Vincenzo Librandi, Sep 05 2025 *)
  • PARI
    a(n) = sum(k=0, n\4, 2^k*binomial(2*n-6*k, 2*k));
    

Formula

G.f.: (1-x-2*x^4)/((1-x-2*x^4)^2 - 8*x^5).
a(n) = 2*a(n-1) - a(n-2) + 4*a(n-4) + 4*a(n-5) - 4*a(n-8).
Showing 1-2 of 2 results.