cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A107758 (+2)Sigma(n): If n = Product p_i^r_i then a(n) = Product (2 + Sum p_i^s_i, s_i=1 to r_i) = Product (1 + (p_i^(r_i+1)-1)/(p_i-1)), a(1) = 1.

Original entry on oeis.org

1, 4, 5, 8, 7, 20, 9, 16, 14, 28, 13, 40, 15, 36, 35, 32, 19, 56, 21, 56, 45, 52, 25, 80, 32, 60, 41, 72, 31, 140, 33, 64, 65, 76, 63, 112, 39, 84, 75, 112, 43, 180, 45, 104, 98, 100, 49, 160, 58, 128, 95, 120, 55, 164, 91, 144, 105, 124, 61, 280, 63, 132, 126, 128, 105, 260, 69, 152, 125, 252, 73, 224, 75, 156, 160
Offset: 1

Views

Author

Yasutoshi Kohmoto, May 25 2005

Keywords

Examples

			a(6) = (2+2)*(2+3) = 20.
		

Crossrefs

Cf. A052396 (k such that a(k) = 2k), A387720 (k such that a(k) < 2k), A387721 (k such that a(k) > 2k), A387725, A386390 (k such that k-1 | a(k)).

Programs

  • Maple
    A107758 := proc(n) local pf,p ; if n = 1 then 1; else pf := ifactors(n)[2] ; mul( 1+(op(1,p)^(op(2,p)+1)-1)/(op(1,p)-1), p=pf) ; end if; end proc:
    seq(A107758(n),n=1..60) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    Table[DivisorSum[n, DivisorSigma[1, #] &, CoprimeQ[n/#, #] &], {n, 54}] (* Michael De Vlieger, Jun 27 2018 *)
    f[p_, e_] := 1 + (p^(e + 1) - 1)/(p - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 26 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(n/d, d) == 1, sigma(d))); \\ Daniel Suteu, Jun 27 2018
    
  • PARI
    A107758(n) =  { my(f = factor(n)); prod(k=1, #f~, 1+sigma(f[k, 1]^f[k, 2])); }; \\ Antti Karttunen, Sep 06 2025

Formula

a(n) = Sum_{d|n, gcd(n/d, d) = 1} sigma(d), where sigma(d) is the sum of the divisors of d. - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 1.0741158... . - Amiram Eldar, Nov 01 2022

Extensions

More terms from Antti Karttunen, Sep 06 2025

A052396 (+2)-sigma perfect numbers: numbers k such that (+2)sigma(k) = 2*k, where (+2)sigma(k) = A107758(k).

Original entry on oeis.org

2, 4, 8, 16, 32, 63, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 34587, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 170271801, 268435456, 536870912, 1073741824, 2147483648, 4294967296
Offset: 1

Views

Author

Yasutoshi Kohmoto Mar 13 2000

Keywords

Comments

2^n is a term for all n>=1. - Amiram Eldar, Aug 26 2022

Examples

			Factorizations: even examples: 2, 2^2, 2^3, 2^4,...; odd examples: a(6) = 3^2*7, a(17) = 3^4*7*61, a(30) = 3^6*7*61*547.
		

Crossrefs

Complement of (A387720 U A387721).

Programs

  • Mathematica
    f[p_, e_] := 1 + (p^(e + 1) - 1)/(p - 1); s[n_] := Times @@ f @@@ FactorInteger[n]; s[1] = 1; Select[Range[5*10^6], s[#] == 2*# &] (* Amiram Eldar, Aug 26 2022 *)

Extensions

Corrected by Franklin T. Adams-Watters, Oct 25 2006
a(30) corrected and a(31)-a(35) added by Amiram Eldar, Aug 26 2022

A387720 Numbers k for which A107758(k) < 2*k, where A107758 is sigma+, multiplicative function with a(p^e) = 1+sigma(p^e).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2025

Keywords

Crossrefs

Cf. A107758.
Complement of (A052396 U A387721).
Cf. also A005100, A246281, A387710.

Programs

  • PARI
    A107758(n) =  { my(f = factor(n)); prod(k=1, #f~, 1+sigma(f[k, 1]^f[k, 2])); };
    is_A387720(n) = (A107758(n)<(2*n));

A387722 Numbers k for which A107758(k) > 2*k, but for all whose proper divisors d|k, dA107758(d) <= 2*d.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 385, 386, 394, 398, 422, 429, 446, 454, 455, 458, 466, 478, 482, 502, 514, 526, 538, 542, 554, 561, 562, 566
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2025

Keywords

Comments

Not the same as the positions of 1's in A387725.

Crossrefs

Setwise difference A387721 \ A387723.
Cf. also A091191, A337372, A387712.

Programs

  • PARI
    A107758(n) =  { my(f = factor(n)); prod(k=1, #f~, 1+sigma(f[k, 1]^f[k, 2])); };
    is_A387722(n) = if((A107758(n)<=(2*n)), 0, fordiv(n, d, if(dA107758(d)>(2*d), return(0))); (1));

A387723 Numbers k for which A107758(k) > 2*k, and also for some of the proper divisors d|k, dA107758(d) > 2*d.

Original entry on oeis.org

12, 18, 20, 24, 28, 30, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 66, 68, 70, 72, 75, 76, 78, 80, 84, 88, 90, 92, 96, 98, 100, 102, 104, 105, 108, 110, 112, 114, 116, 120, 124, 126, 130, 132, 135, 136, 138, 140, 144, 148, 150, 152, 154, 156, 160, 162, 164, 165, 168, 170, 172, 174, 176, 180, 182, 184, 186, 188
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2025

Keywords

Comments

Not the same as positions of terms > 1 in A387725. For example, A387725(225) = 3, although 225 is not present in this sequence.

Crossrefs

Setwise difference A387721 \ A387722.
Cf. also A341610, A387713.

Programs

  • PARI
    A107758(n) =  { my(f = factor(n)); prod(k=1, #f~, 1+sigma(f[k, 1]^f[k, 2])); };
    is_A387723(n) = if((A107758(n)<=(2*n)), 0, fordiv(n, d, if(dA107758(d)>(2*d), return(1))); (0));

A387725 Number of unitary divisors d of n for which A107758(d) > 2*d, where A107758 is sigma+, multiplicative function with a(p^e) = 1+sigma(p^e).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 1, 0, 0, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2025

Keywords

Crossrefs

Cf. A107758, A387721 (positions of positive terms).
Cf. also A387715, A337345.

Programs

  • PARI
    A107758(n) =  { my(f = factor(n)); prod(k=1, #f~, 1+sigma(f[k, 1]^f[k, 2])); };
    A387725(n) = sumdiv(n,d,(1==gcd(d,n/d)) && (A107758(d)>(2*d)));

Formula

a(n) = Sum_{d|n} [gcd(d,n/d)==1 and A107758(d) > 2*d], where [ ] is the Iverson bracket.
Showing 1-6 of 6 results.