A252892
Primes p such that sigma(p) = 1 + p is a partition number (sorted increasingly).
Original entry on oeis.org
2, 29, 41, 6841, 37337, 53173, 105557, 124753, 614153, 26543659, 541946239, 2841940499, 3519222691, 30388671977, 6622987708039, 3925922161489421, 1089657644424399781, 9147679068859117601, 13196258966925435701, 505499305314204629557, 2715220650772245313219
Offset: 1
41 is in the sequence because 41 is prime and the sum of divisors of 41 is 1 + 41 = 42 and 42 is the partition number of 10.
-
lista() = {v = readvec("b000041.txt"); for (n=1, #v, if (isprime(p=v[n]-1), print1(p, ", ")););} \\ Michel Marcus, Dec 29 2014
A304627
a(n) = [x^n] Product_{k>=1} (1 + x^k)*(1 - x^(n*k))/((1 - x^k)*(1 + x^(n*k))).
Original entry on oeis.org
1, 0, 2, 6, 12, 22, 38, 62, 98, 152, 230, 342, 502, 726, 1038, 1470, 2060, 2862, 3946, 5398, 7334, 9902, 13286, 17726, 23526, 31064, 40822, 53406, 69566, 90246, 116622, 150142, 192610, 246254, 313806, 398638, 504884, 637590, 802934, 1008446, 1263270, 1578526, 1967694, 2447062
Offset: 0
-
Table[SeriesCoefficient[Product[(1 + x^k) (1 - x^(n k))/((1 - x^k) (1 + x^(n k))) , {k, 1, n}], {x, 0, n}], {n, 0, 43}]
Table[SeriesCoefficient[Product[(1 + x^k)/(1 - x^k), {k, 1, n - 1}], {x, 0, n}], {n, 0, 43}]
Join[{1}, Table[SeriesCoefficient[EllipticTheta[4, 0, x^n]/EllipticTheta[4, 0, x], {x, 0, n}], {n, 43}]]
nmax = 43; CoefficientList[Series[1/EllipticTheta[4, 0, x] - 2 x/(1 - x), {x, 0, nmax}], x]
A357476
Number of partitions of n into two or more powers of 2.
Original entry on oeis.org
0, 0, 1, 2, 3, 4, 6, 6, 9, 10, 14, 14, 20, 20, 26, 26, 35, 36, 46, 46, 60, 60, 74, 74, 94, 94, 114, 114, 140, 140, 166, 166, 201, 202, 238, 238, 284, 284, 330, 330, 390, 390, 450, 450, 524, 524, 598, 598, 692, 692, 786, 786, 900, 900, 1014, 1014, 1154, 1154, 1294, 1294, 1460
Offset: 0
A364058
Heinz numbers of integer partitions with median > 1. Numbers whose multiset of prime factors has median > 2.
Original entry on oeis.org
3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86
Offset: 1
The terms together with their prime indices begin:
3: {2} 23: {9} 42: {1,2,4}
5: {3} 25: {3,3} 43: {14}
6: {1,2} 26: {1,6} 45: {2,2,3}
7: {4} 27: {2,2,2} 46: {1,9}
9: {2,2} 29: {10} 47: {15}
10: {1,3} 30: {1,2,3} 49: {4,4}
11: {5} 31: {11} 50: {1,3,3}
13: {6} 33: {2,5} 51: {2,7}
14: {1,4} 34: {1,7} 53: {16}
15: {2,3} 35: {3,4} 54: {1,2,2,2}
17: {7} 36: {1,1,2,2} 55: {3,5}
18: {1,2,2} 37: {12} 57: {2,8}
19: {8} 38: {1,8} 58: {1,10}
21: {2,4} 39: {2,6} 59: {17}
22: {1,5} 41: {13} 60: {1,1,2,3}
These partitions are counted by
A238495.
A360005 gives twice the median of prime indices,
A360459 for prime factors.
-
prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
Select[Range[100],Median[prifacs[#]]>2&]
Comments