cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-54 of 54 results.

A272137 Primes of the form k^16 + 1.

Original entry on oeis.org

2, 65537, 197352587024076973231046657, 808551180810136214718004658177, 1238846438084943599707227160577, 37157429083410091685945089785857, 123025056645280288014028950372089857, 150838912030874130174020868290707457
Offset: 1

Views

Author

Jaroslav Krizek, May 08 2016

Keywords

Comments

Corresponding values of k are in A006313.

Crossrefs

Cf. Sequences of numbers n such that n^(2^k)+1 is a prime p for k = 1-13: A005574 (k=1), A000068 (k=2), A006314 (k=3), A006313 (k=4), A006315 (k=5), A006316 (k=6), A056994 (k=7), A056995 (k=8), A057465 (k=9), A057002 (k=10), A088361 (k=11), A088362 (k=12), A226528 (k=13).
Corresponding sequences of primes p of the form n^(2^k)+1 for k = 1-4: A002496 (k=1), A037896 (k=2), A258805 (k=3), A272137 (k=4).

Programs

  • Magma
    [n^16 + 1: n in [1..700] | IsPrime(n^16 + 1)];
  • Maple
    A272137:=n->`if`(isprime(n^16+1), n^16+1, NULL): seq(A272137(n), n=1..200); # Wesley Ivan Hurt, May 11 2016

A135047 Initial members of an octuplet of generalized Fermat primes: numbers n such that (n+m)^4+1 is prime for m=0,2,4,6,8,10,12 and 14.

Original entry on oeis.org

10332305196, 15731023654, 202193785336, 417860702688, 427241399860, 648488931216
Offset: 1

Views

Author

Martin Raab, Feb 11 2008

Keywords

Comments

n^4+1 can be prime for at most eight consecutive even numbers n, otherwise at least one member would be divisible by 17.

Examples

			a(1)=10332305196 because 103323051964^4+1 is prime and (10332305196+m)^4+1 is prime for all even m up to 14.
		

Crossrefs

Cf. A000068.

A242552 Least number k such that n^4 + k^4 is prime.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 3, 2, 7, 2, 13, 4, 5, 8, 1, 2, 5, 2, 1, 10, 15, 2, 1, 6, 3, 2, 1, 12, 7, 12, 5, 14, 1, 6, 7, 2, 3, 14, 9, 2, 5, 10, 21, 2, 1, 4, 1, 2, 7, 2, 11, 6, 1, 14, 1, 2, 7, 2, 11, 2, 11, 8, 23, 16, 29, 12, 3, 10, 27, 2, 5, 8, 1, 8, 3, 20, 17, 2, 1, 10, 1, 10
Offset: 1

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

If a(n) = 1, then n is in A000068.

Examples

			8^4+1^4 = 4097 is not prime. 8^4+2^4 = 4112 is not prime. 8^4+3^4 = 4177 is prime. Thus, a(8) = 3.
		

Crossrefs

Programs

  • PARI
    a(n)=for(k=1,oo,if(ispseudoprime(n^4+k^4),return(k)));
  • Python
    import sympy
    from sympy import isprime
    def a(n):
      for k in range(10**4):
        if isprime(n**4+k**4):
          return k
    n = 1
    while n < 100:
      print(a(n))
      n += 1
    

A277967 Number of even numbers b with 0 < b < 2^n such that b^(2^n) + 1 is prime.

Original entry on oeis.org

0, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 2, 3, 4, 1
Offset: 1

Views

Author

Jeppe Stig Nielsen, Nov 06 2016

Keywords

Comments

The choice whether to take b < 2^n or b <= 2^n matters only for n=1 and n=2 unless there are more primes like 2^2+1 and 4^4+1 (see A121270).
Perfect squares b are allowed.
a(20) was determined after a lengthy computation by distributed project PrimeGrid, cf. A321323. - Jeppe Stig Nielsen, Jan 02 2019

Examples

			For n=18, we get b^262144 + 1 is prime for b=24518, 40734, 145310, 361658, 525094, ...; the first 3 of these b values are strictly below 262144, hence a(18)=3.
The corresponding primes are 2^4+1; 2^8+1, 4^8+1; 2^16+1; 30^32+1; 120^128+1; 46^512+1; etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Range[2, 2^n - 1, 2], b_ /; PrimeQ[b^(2^n) + 1]], {n, 9}] (* Michael De Vlieger, Nov 10 2016 *)
  • PARI
    a(n)=sum(k=1,2^(n-1)-1,ispseudoprime((2*k)^2^n+1)) \\ slow, only probabilistic primality test

Extensions

a(20) from Jeppe Stig Nielsen, Jan 02 2019
Previous Showing 51-54 of 54 results.