cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 693 results. Next

A242353 Number T(n,k) of two-colored rooted trees of order n and structure k; triangle T(n,k), n>=1, 1<=k<=A000081(n), read by rows.

Original entry on oeis.org

2, 4, 8, 6, 16, 12, 16, 8, 32, 24, 32, 16, 32, 24, 20, 24, 10, 64, 48, 64, 32, 64, 48, 40, 48, 20, 64, 48, 64, 32, 64, 48, 48, 36, 40, 32, 12, 128, 96, 128, 64, 128, 96, 80, 96, 40, 128, 96, 128, 64, 128, 96, 96, 72, 80, 64, 24, 128, 96, 128, 64, 128, 96, 80
Offset: 1

Views

Author

Martin Paech, May 11 2014

Keywords

Comments

The underlying partitions of n-1 (cf. A000041) for the construction of the trees with n nodes are generated in descending order, the elements within a partition are sorted in ascending order, e.g.,
n = 1
{0} |-> () |-> 10_2
n = 2
{1} |-> (()) |-> 1100_2
n = 3
{2} > {1, 1} |-> ((())) > (()()) |-> 111000_2 > 110100_2
n = 4
{3} > {1, 2} > {1, 1, 1} |-> (((()))) > ((()())) > (()(())) > (()()()) |-> 11110000_2 > 11101000_2 > 11011000_2 > 11010100_2
The decimal equivalents of the binary encoded rooted trees in row n are the descending ordered elements of row n in A216648.

Examples

			Let {u, d} be a set of two colors, corresponding each with the up-spin and down-spin electrons in the underlying physical problem. (We consider each rooted tree as a cutout of the Bethe lattice in infinite dimensions.) Then for
n = 1 with A000081(1) = 1
  u(), d() are the 2 two-colored trees of the first and only structure k = 1 (sum is 2 = A038055(1)); for
n = 2 with A000081(2) = 1
  u(u()), u(d()), d(u()), d(d()) are the 4 two-colored trees of the first and only structure k = 1 (sum is 4 = A038055(2)); for
n = 3 with A000081(3) = 2
  u(u(u())), u(u(d())), u(d(u())), u(d(d())), d(u(u())), d(u(d())), d(d(u())), d(d(d())) are the 8 two-colored trees of the structure k = 1 and
  u(u()u()), u(u()d()), u(d()d()), d(u()u()), d(u()d()), d(d()d()) are the 6 two-colored trees of the structure k = 2 (sum is 14 = A038055(3)).
Triangle T(n,k) begins:
2;
4;
8,   6;
16, 12, 16,  8;
32, 24, 32, 16, 32, 24, 20, 24, 10;
		

References

  • G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011
  • Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002.

Crossrefs

Row sums give A038055.
Row length is A000081.
Total number of elements up to and including row n is A087803.
Cf. A216648.

A336039 Numbers k such that A000081(k) is divisible by k.

Original entry on oeis.org

1, 4, 24, 72, 121, 475, 8744, 19933, 38357, 41685
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 07 2020

Keywords

Comments

No other terms below 100000. - Mathieu Gouttenoire, Nov 01 2021

Examples

			24 is in the sequence because A000081(24) = 24 * 30988541.
72 is in the sequence because A000081(72) = 72 * 77434098197798038469129694128.
		

Crossrefs

Extensions

a(10) from Mathieu Gouttenoire, Nov 01 2021

A051529 INVERT transform of A000081 = [1, 1, 1, 2, 4, 9, 20, 48, 115, 286,...].

Original entry on oeis.org

1, 2, 4, 9, 21, 51, 126, 318, 812, 2100, 5482, 14438, 38303, 102302, 274824, 742210, 2013941, 5488239, 15014376, 41221775, 113542455, 313681756, 868994723, 2413526848, 6719132105, 18746838609, 52412080624, 146812972155, 411977724704, 1158006098132
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, 1, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= proc(n) option remember; local i; `if`(n<1, 1, add(a(n-i) *b(i-1), i=1..n+1)) end: seq(a(n), n=0..30);  # Alois P. Heinz, Apr 01 2009
  • Mathematica
    b[n_] := b[n] = If[n <= 1, 1, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/ (n - 1)];
    a[n_] := a[n] = If[n < 1, 1, Sum[a[n - i]*b[i - 1], {i, 1, n + 1}]];
    a /@ Range[0, 30] (* Jean-François Alcover, Mar 01 2021, after Alois P. Heinz *)

A051784 Apply the "Stirling-Bernoulli transform" to A000081 = (1,1,1,2,4,9,20,...), rooted trees.

Original entry on oeis.org

1, 0, 0, -6, 12, -270, 1500, -43806, 302652, -12857550, 132059100, -5733723006, 89592628092, -3922345875630, 79865827177500, -3844579915776606, 95745315867430332, -4957995149918778510, 151156611852387524700, -8193660691162420044606, 298062602379028314213372
Offset: 0

Views

Author

N. J. A. Sloane, Dec 09 1999

Keywords

Comments

The "Stirling-Bernoulli transform" maps a sequence b_0, b_1, b_2, ... to a sequence c_0, c_1, c_2, ..., where if B has o.g.f. B(x), c has e.g.f. exp(x)*B(1-exp(x)).

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if` (n<3, 1,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= n-> add((-1)^k *k! *Stirling2(n+1, k+1)*b(k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 17 2013
  • Mathematica
    b[n_] := b[n] = Module[{d, j}, If[n < 3, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]]; a[n_] := Sum[(-1)^k*k!*StirlingS2[n+1, k+1]*b[k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 01 2014, after Alois P. Heinz *)

A074797 a(n) = A000081(n+1) - 2*A000081(n).

Original entry on oeis.org

1, 2, 8, 19, 56, 147, 404, 1082, 2954, 8001, 21865, 59759, 164085, 451465, 1246358, 3448876, 9569376, 26611517, 74172493, 207159274, 579724677, 1625287220, 4564461309, 12839597611, 36172421770, 102053738981, 288317817804, 815591326704, 2309951078955
Offset: 4

Views

Author

Alford Arnold, Sep 07 2002

Keywords

Comments

Counts exceptional non-overlapping circles. These circles are exceptional because they are neither generated by encircling any case at level n-1 nor do they result from appending an external circle to any case at level n-1. When n=4 the case is (())(()).

Examples

			a(8) = 56 because we can write A000081(9) - 2*A000081(8) = 286 - 2*115.
a(8) also = 56 because we know that 8=6+2=5+3=4+4=4+2+2=3+3+2=2+2+2+2 and these partitions contribute 20*1 + 9*2 + 4*5/2 + 4 + 3 + 1 cases.
		

Crossrefs

Cf. A000081.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if` (n<2, n,
          (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1))
        end:
    a:= n-> b(n+1)-2*b(n):
    seq(a(n), n=4..50);  # Alois P. Heinz, May 16 2013
  • Mathematica
    a81[1] = 1; a81[n_] := a81[n] = Sum[a81[n-k]*DivisorSum[k, #*a81[#]&], {k, 1, n-1}]/(n-1); a[n_] := a81[n+1] - 2*a81[n]; Table[a[n], {n, 4, 50}] (* Jean-François Alcover, Jan 08 2016 *)

Extensions

More terms from Sascha Kurz, Feb 10 2003

A124682 a(n) = A002861(n) + A000081(n).

Original entry on oeis.org

2, 3, 6, 13, 29, 71, 173, 444, 1148, 3030, 8059, 21715, 58836, 160687, 441083, 1217134, 3372386, 9380948, 26180962, 73292358, 205731862, 578922864, 1632707684, 4614098810, 13064064882, 37052720050, 105257568244, 299452309023, 853094139960, 2433439189419
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2006

Keywords

Crossrefs

See A126285.

A242354 Number T(n,k) of four-colored rooted trees of order n and structure k; triangle T(n,k), n>=1, 1<=k<=A000081(n), read by rows.

Original entry on oeis.org

4, 16, 64, 40, 256, 160, 256, 80, 1024, 640, 1024, 320, 1024, 640, 544, 640, 140, 4096, 2560, 4096, 1280, 4096, 2560, 2176, 2560, 560, 4096, 2560, 4096, 1280, 4096, 2560, 2560, 1600, 2176, 1280, 224, 16384, 10240, 16384, 5120, 16384, 10240, 8704, 10240, 2240
Offset: 1

Views

Author

Martin Paech, May 16 2014

Keywords

Comments

The underlying partitions of n-1 (cf. A000041) for the construction of the trees with n nodes are generated in descending order, the elements within a partition are sorted in ascending order, e.g.,
n = 1
{0} |-> () |-> 10_2
n = 2
{1} |-> (()) |-> 1100_2
n = 3
{2} > {1, 1} |-> ((())) > (()()) |-> 111000_2 > 110100_2
n = 4
{3} > {1, 2} > {1, 1, 1} |-> (((()))) > ((()())) > (()(())) > (()()()) |-> 11110000_2 > 11101000_2 > 11011000_2 > 11010100_2
The decimal equivalents of the binary encoded rooted trees in row n are the descending ordered elements of row n in A216648.

Examples

			Let {h, u, d, p} be a set of four colors, corresponding to the four possible "states" of each tree node (lattice site) in the underlying physical problem, namely its occupation with no electron (hole), with one up-spin electron, with one down-spin electron, or with one up-spin and one down-spin electron (pair). (We consider each rooted tree as a cutout of the Bethe lattice in infinite dimensions.) Then for
n = 1 with A000081(1) = 1
  h(), u(), d(), p() are the 4 four-colored trees of the first and only structure k = 1 (sum is 4 = A136793(1)); for
n = 2 with A000081(2) = 1
  h(h()), h(u()), h(d()), h(p()),
  u(h()), u(u()), u(d()), u(p()),
  d(h()), d(u()), d(d()), d(p()),
  p(h()), p(u()), p(d()), p(p()) are the 16 four-colored trees of the first and only structure k = 1 (sum is 16 = A136793(2)); for
n = 3 with A000081(3) = 2
  h(h(h())), h(h(u())), h(h(d())), h(h(p())),
  h(u(h())), ...
                              ..., p(d(p())),
  p(p(h())), p(p(u())), p(p(d())), p(p(p())) are the 64 four-colored trees of the structure k = 1 and
  h(h()h()), h(h()u()), h(h()d()), h(h()p()),
  h(u()u()), h(u()d()), h(u()p()),
  h(d()d()), h(d()p()),
  h(p()p()),
  ...,
  p(h()h()), p(h()u()), p(h()d()), p(h()p()),
  p(u()u()), p(u()d()), p(u()p()),
  p(d()d()), p(d()p()),
  p(p()p()) are the 40 four-colored trees of the structure k = 2 (sum is 104 = A136793(3)).
Triangle T(n,k) begins:
4;
16;
64, 40;
256, 160, 256, 80;
1024, 640, 1024, 320, 1024, 640, 544, 640, 140;
		

References

  • G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011
  • Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002.

Crossrefs

Row sums give A136793.
Row length is A000081.
Total number of elements up to and including row n is A087803.

A244519 Expansion of Product_{n>=1} (1 + H(x^n)) where H(x) is the g.f. of A000081.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 35, 76, 175, 414, 1009, 2510, 6382, 16448, 42961, 113352, 301715, 808932, 2182739, 5921803, 16143975, 44199809, 121477237, 335015538, 926814691, 2571322157, 7152404733, 19942874638, 55729271645, 156051344975, 437801148097, 1230423785329, 3463777894236, 9766002585763, 27574869734583, 77965430442158
Offset: 0

Views

Author

Joerg Arndt, Jul 10 2014

Keywords

Comments

Which combinatorial objects does this sequence count?

Crossrefs

Cf. A001372 (expansion of 1/Product_{n>=1} (1 - H(x^n))).

Programs

  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
    A000081=concat([0], A);
    H(t)=subst(Ser(A000081, 't), 't, t);
    x='x+O('x^N);
    T=prod(n=1,N, 1 + H(x^n));
    Vec(T)

A275330 Triangle read by rows, T(n,k) = t(n-k+1)*Sum_{d|k} d*t(d) with t = A000081, for n>=1 and 1<=k<=n.

Original entry on oeis.org

1, 1, 3, 2, 3, 7, 4, 6, 7, 19, 9, 12, 14, 19, 46, 20, 27, 28, 38, 46, 129, 48, 60, 63, 76, 92, 129, 337, 115, 144, 140, 171, 184, 258, 337, 939, 286, 345, 336, 380, 414, 516, 674, 939, 2581, 719, 858, 805, 912, 920, 1161, 1348, 1878, 2581, 7238
Offset: 1

Views

Author

Peter Luschny, Aug 18 2016

Keywords

Examples

			Table starts:
[n] [k=1,2,...] row sum
[1] [1] 1
[2] [1, 3] 4
[3] [2, 3, 7] 12
[4] [4, 6, 7, 19] 36
[5] [9, 12, 14, 19, 46] 100
[6] [20, 27, 28, 38, 46, 129] 288
[7] [48, 60, 63, 76, 92, 129, 337] 805
[8] [115, 144, 140, 171, 184, 258, 337, 939] 2288
[9] [286, 345, 336, 380, 414, 516, 674, 939, 2581] 6471
		

Crossrefs

T(n,0) = A000081(n).
T(n,n) = A209397(n).
Sum_k T(n,k) = A095350(n+1).
Cf. A275331.

Programs

  • Sage
    @cached_function
    def t():
        n = 1
        b = [0,1]
        while True:
            S = [b[n-k+1]*sum(d*b[d] for d in divisors(k)) for k in (1..n)]
            b.append(sum(S)//n)
            yield S
            n += 1
    t_list = t()
    for n in (1..12): print(next(t_list))

A275331 Triangle read by rows, T(n,k) = k*Sum_{m=1..n/k} t(k)*t(n-k*m+1) with t = A000081, for n>=1 and 1<=k<=n.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 8, 6, 6, 16, 17, 10, 12, 16, 45, 37, 24, 30, 32, 45, 120, 85, 50, 60, 64, 90, 120, 336, 200, 120, 132, 160, 180, 240, 336, 920, 486, 280, 318, 336, 405, 480, 672, 920, 2574, 1205, 692, 750, 800, 945, 1080, 1344, 1840, 2574, 7190
Offset: 1

Views

Author

Peter Luschny, Aug 18 2016

Keywords

Examples

			Triangle starts:
[n] [k=1,2,...] row sum
[1] [1] 1
[2] [2, 2] 4
[3] [4, 2, 6] 12
[4] [8, 6, 6, 16] 36
[5] [17, 10, 12, 16, 45] 100
[6] [37, 24, 30, 32, 45, 120] 288
[7] [85, 50, 60, 64, 90, 120, 336] 805
[8] [200, 120, 132, 160, 180, 240, 336, 920] 2288
[9] [486, 280, 318, 336, 405, 480, 672, 920, 2574] 6471
		

Crossrefs

T(n,0) = A087803(n).
T(n,n) = A055544(n).
Sum_k T(n,k) = A095350(n+1).

Programs

  • Sage
    @cached_function
    def t():
        n = 1
        b = [0,1]
        while True:
            S = [k*sum(b[k]*b[n-k*m+1] for m in (1..n//k)) for k in (1..n)]
            b.append(sum(S)//n)
            yield S
            n += 1
    t_list = t()
    for n in (1..8): print(next(t_list))
Previous Showing 21-30 of 693 results. Next