A242353
Number T(n,k) of two-colored rooted trees of order n and structure k; triangle T(n,k), n>=1, 1<=k<=A000081(n), read by rows.
Original entry on oeis.org
2, 4, 8, 6, 16, 12, 16, 8, 32, 24, 32, 16, 32, 24, 20, 24, 10, 64, 48, 64, 32, 64, 48, 40, 48, 20, 64, 48, 64, 32, 64, 48, 48, 36, 40, 32, 12, 128, 96, 128, 64, 128, 96, 80, 96, 40, 128, 96, 128, 64, 128, 96, 96, 72, 80, 64, 24, 128, 96, 128, 64, 128, 96, 80
Offset: 1
Let {u, d} be a set of two colors, corresponding each with the up-spin and down-spin electrons in the underlying physical problem. (We consider each rooted tree as a cutout of the Bethe lattice in infinite dimensions.) Then for
n = 1 with A000081(1) = 1
u(), d() are the 2 two-colored trees of the first and only structure k = 1 (sum is 2 = A038055(1)); for
n = 2 with A000081(2) = 1
u(u()), u(d()), d(u()), d(d()) are the 4 two-colored trees of the first and only structure k = 1 (sum is 4 = A038055(2)); for
n = 3 with A000081(3) = 2
u(u(u())), u(u(d())), u(d(u())), u(d(d())), d(u(u())), d(u(d())), d(d(u())), d(d(d())) are the 8 two-colored trees of the structure k = 1 and
u(u()u()), u(u()d()), u(d()d()), d(u()u()), d(u()d()), d(d()d()) are the 6 two-colored trees of the structure k = 2 (sum is 14 = A038055(3)).
Triangle T(n,k) begins:
2;
4;
8, 6;
16, 12, 16, 8;
32, 24, 32, 16, 32, 24, 20, 24, 10;
- G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011
- Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002.
- Martin Paech, Rows n = 1..14, flattened
- E. Kalinowski and W. Gluza, Evaluation of High Order Terms for the Hubbard Model in the Strong-Coupling Limit, arXiv:1106.4938, 2011 (Physical Review B 85, 045105, Jan 2012)
- E. Kalinowski and M. Paech, Table of two-colored Butcher trees B(n,k,m) up to order n = 5.
- M. Paech, A sonification of this sequence, created with MUSICALGORITHMS, using simple 'division operation' instead of modulo scaling (3047 elements, 240 bpm).
- M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012)
Total number of elements up to and including row n is
A087803.
A336039
Numbers k such that A000081(k) is divisible by k.
Original entry on oeis.org
1, 4, 24, 72, 121, 475, 8744, 19933, 38357, 41685
Offset: 1
24 is in the sequence because A000081(24) = 24 * 30988541.
72 is in the sequence because A000081(72) = 72 * 77434098197798038469129694128.
A051529
INVERT transform of A000081 = [1, 1, 1, 2, 4, 9, 20, 48, 115, 286,...].
Original entry on oeis.org
1, 2, 4, 9, 21, 51, 126, 318, 812, 2100, 5482, 14438, 38303, 102302, 274824, 742210, 2013941, 5488239, 15014376, 41221775, 113542455, 313681756, 868994723, 2413526848, 6719132105, 18746838609, 52412080624, 146812972155, 411977724704, 1158006098132
Offset: 0
-
with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, 1, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= proc(n) option remember; local i; `if`(n<1, 1, add(a(n-i) *b(i-1), i=1..n+1)) end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 01 2009
-
b[n_] := b[n] = If[n <= 1, 1, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/ (n - 1)];
a[n_] := a[n] = If[n < 1, 1, Sum[a[n - i]*b[i - 1], {i, 1, n + 1}]];
a /@ Range[0, 30] (* Jean-François Alcover, Mar 01 2021, after Alois P. Heinz *)
A051784
Apply the "Stirling-Bernoulli transform" to A000081 = (1,1,1,2,4,9,20,...), rooted trees.
Original entry on oeis.org
1, 0, 0, -6, 12, -270, 1500, -43806, 302652, -12857550, 132059100, -5733723006, 89592628092, -3922345875630, 79865827177500, -3844579915776606, 95745315867430332, -4957995149918778510, 151156611852387524700, -8193660691162420044606, 298062602379028314213372
Offset: 0
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if` (n<3, 1,
(add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
a:= n-> add((-1)^k *k! *Stirling2(n+1, k+1)*b(k), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, May 17 2013
-
b[n_] := b[n] = Module[{d, j}, If[n < 3, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]]; a[n_] := Sum[(-1)^k*k!*StirlingS2[n+1, k+1]*b[k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 01 2014, after Alois P. Heinz *)
Original entry on oeis.org
1, 2, 8, 19, 56, 147, 404, 1082, 2954, 8001, 21865, 59759, 164085, 451465, 1246358, 3448876, 9569376, 26611517, 74172493, 207159274, 579724677, 1625287220, 4564461309, 12839597611, 36172421770, 102053738981, 288317817804, 815591326704, 2309951078955
Offset: 4
a(8) = 56 because we can write A000081(9) - 2*A000081(8) = 286 - 2*115.
a(8) also = 56 because we know that 8=6+2=5+3=4+4=4+2+2=3+3+2=2+2+2+2 and these partitions contribute 20*1 + 9*2 + 4*5/2 + 4 + 3 + 1 cases.
-
with(numtheory):
b:= proc(n) option remember; local d, j; `if` (n<2, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1))
end:
a:= n-> b(n+1)-2*b(n):
seq(a(n), n=4..50); # Alois P. Heinz, May 16 2013
-
a81[1] = 1; a81[n_] := a81[n] = Sum[a81[n-k]*DivisorSum[k, #*a81[#]&], {k, 1, n-1}]/(n-1); a[n_] := a81[n+1] - 2*a81[n]; Table[a[n], {n, 4, 50}] (* Jean-François Alcover, Jan 08 2016 *)
Original entry on oeis.org
2, 3, 6, 13, 29, 71, 173, 444, 1148, 3030, 8059, 21715, 58836, 160687, 441083, 1217134, 3372386, 9380948, 26180962, 73292358, 205731862, 578922864, 1632707684, 4614098810, 13064064882, 37052720050, 105257568244, 299452309023, 853094139960, 2433439189419
Offset: 1
A242354
Number T(n,k) of four-colored rooted trees of order n and structure k; triangle T(n,k), n>=1, 1<=k<=A000081(n), read by rows.
Original entry on oeis.org
4, 16, 64, 40, 256, 160, 256, 80, 1024, 640, 1024, 320, 1024, 640, 544, 640, 140, 4096, 2560, 4096, 1280, 4096, 2560, 2176, 2560, 560, 4096, 2560, 4096, 1280, 4096, 2560, 2560, 1600, 2176, 1280, 224, 16384, 10240, 16384, 5120, 16384, 10240, 8704, 10240, 2240
Offset: 1
Let {h, u, d, p} be a set of four colors, corresponding to the four possible "states" of each tree node (lattice site) in the underlying physical problem, namely its occupation with no electron (hole), with one up-spin electron, with one down-spin electron, or with one up-spin and one down-spin electron (pair). (We consider each rooted tree as a cutout of the Bethe lattice in infinite dimensions.) Then for
n = 1 with A000081(1) = 1
h(), u(), d(), p() are the 4 four-colored trees of the first and only structure k = 1 (sum is 4 = A136793(1)); for
n = 2 with A000081(2) = 1
h(h()), h(u()), h(d()), h(p()),
u(h()), u(u()), u(d()), u(p()),
d(h()), d(u()), d(d()), d(p()),
p(h()), p(u()), p(d()), p(p()) are the 16 four-colored trees of the first and only structure k = 1 (sum is 16 = A136793(2)); for
n = 3 with A000081(3) = 2
h(h(h())), h(h(u())), h(h(d())), h(h(p())),
h(u(h())), ...
..., p(d(p())),
p(p(h())), p(p(u())), p(p(d())), p(p(p())) are the 64 four-colored trees of the structure k = 1 and
h(h()h()), h(h()u()), h(h()d()), h(h()p()),
h(u()u()), h(u()d()), h(u()p()),
h(d()d()), h(d()p()),
h(p()p()),
...,
p(h()h()), p(h()u()), p(h()d()), p(h()p()),
p(u()u()), p(u()d()), p(u()p()),
p(d()d()), p(d()p()),
p(p()p()) are the 40 four-colored trees of the structure k = 2 (sum is 104 = A136793(3)).
Triangle T(n,k) begins:
4;
16;
64, 40;
256, 160, 256, 80;
1024, 640, 1024, 320, 1024, 640, 544, 640, 140;
- G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011
- Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002.
- Martin Paech, Rows n = 1..10, flattened
- E. Kalinowski and W. Gluza, Evaluation of High Order Terms for the Hubbard Model in the Strong-Coupling Limit, arXiv:1106.4938, 2011 (Physical Review B 85, 045105, Jan 2012)
- E. Kalinowski and M. Paech, Table of four-colored Butcher trees B(n,k,m) up to order n = 4.
- M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012)
Total number of elements up to and including row n is
A087803.
A244519
Expansion of Product_{n>=1} (1 + H(x^n)) where H(x) is the g.f. of A000081.
Original entry on oeis.org
1, 1, 2, 4, 8, 16, 35, 76, 175, 414, 1009, 2510, 6382, 16448, 42961, 113352, 301715, 808932, 2182739, 5921803, 16143975, 44199809, 121477237, 335015538, 926814691, 2571322157, 7152404733, 19942874638, 55729271645, 156051344975, 437801148097, 1230423785329, 3463777894236, 9766002585763, 27574869734583, 77965430442158
Offset: 0
Cf.
A001372 (expansion of 1/Product_{n>=1} (1 - H(x^n))).
-
N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
A000081=concat([0], A);
H(t)=subst(Ser(A000081, 't), 't, t);
x='x+O('x^N);
T=prod(n=1,N, 1 + H(x^n));
Vec(T)
A275330
Triangle read by rows, T(n,k) = t(n-k+1)*Sum_{d|k} d*t(d) with t = A000081, for n>=1 and 1<=k<=n.
Original entry on oeis.org
1, 1, 3, 2, 3, 7, 4, 6, 7, 19, 9, 12, 14, 19, 46, 20, 27, 28, 38, 46, 129, 48, 60, 63, 76, 92, 129, 337, 115, 144, 140, 171, 184, 258, 337, 939, 286, 345, 336, 380, 414, 516, 674, 939, 2581, 719, 858, 805, 912, 920, 1161, 1348, 1878, 2581, 7238
Offset: 1
Table starts:
[n] [k=1,2,...] row sum
[1] [1] 1
[2] [1, 3] 4
[3] [2, 3, 7] 12
[4] [4, 6, 7, 19] 36
[5] [9, 12, 14, 19, 46] 100
[6] [20, 27, 28, 38, 46, 129] 288
[7] [48, 60, 63, 76, 92, 129, 337] 805
[8] [115, 144, 140, 171, 184, 258, 337, 939] 2288
[9] [286, 345, 336, 380, 414, 516, 674, 939, 2581] 6471
A275331
Triangle read by rows, T(n,k) = k*Sum_{m=1..n/k} t(k)*t(n-k*m+1) with t = A000081, for n>=1 and 1<=k<=n.
Original entry on oeis.org
1, 2, 2, 4, 2, 6, 8, 6, 6, 16, 17, 10, 12, 16, 45, 37, 24, 30, 32, 45, 120, 85, 50, 60, 64, 90, 120, 336, 200, 120, 132, 160, 180, 240, 336, 920, 486, 280, 318, 336, 405, 480, 672, 920, 2574, 1205, 692, 750, 800, 945, 1080, 1344, 1840, 2574, 7190
Offset: 1
Triangle starts:
[n] [k=1,2,...] row sum
[1] [1] 1
[2] [2, 2] 4
[3] [4, 2, 6] 12
[4] [8, 6, 6, 16] 36
[5] [17, 10, 12, 16, 45] 100
[6] [37, 24, 30, 32, 45, 120] 288
[7] [85, 50, 60, 64, 90, 120, 336] 805
[8] [200, 120, 132, 160, 180, 240, 336, 920] 2288
[9] [486, 280, 318, 336, 405, 480, 672, 920, 2574] 6471
Comments