cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A038002 Number of connected functions on n points with a single labeled point.

Original entry on oeis.org

0, 1, 3, 9, 27, 81, 242, 722, 2150, 6395, 19003, 56428, 167458, 496724, 1472835, 4365692, 12936998, 38327764, 113529027, 336221554, 995586119, 2947641940, 8726093434, 25829729702, 76450357119, 226257478851, 669566448376, 1981320898874, 5862583555761
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

G.f.: B(x)(B(x)+1) where B(x) is g.f. of A000107.
a(n) = Sum_{k=1..n} k * A339067(n,k). - Alois P. Heinz, Dec 04 2020
G.f.: A000081(x) / (1 - A000081(x))^2, where A000081(x) is the g.f. of A000081. - Vaclav Kotesovec, Jan 03 2021

A214567 Maximal number of distinct rooted trees obtained from the rooted tree with Matula-Goebel number n by adding one pendant edge at one of its vertices.

Original entry on oeis.org

1, 2, 3, 2, 4, 4, 3, 2, 3, 5, 5, 4, 5, 4, 6, 2, 4, 4, 3, 5, 5, 6, 4, 4, 4, 6, 3, 4, 6, 7, 6, 2, 7, 5, 6, 4, 5, 4, 7, 5, 6, 6, 5, 6, 6, 5, 7, 4, 3, 5, 6, 6, 3, 4, 8, 4, 5, 7, 5, 7, 5, 7, 5, 2, 8, 8, 4, 5, 6, 7, 6, 4, 6, 6, 6, 4, 7, 8, 7, 5, 3
Offset: 1

Views

Author

Emeric Deutsch, Jul 25 2012

Keywords

Comments

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
Sum_{j such that rooted tree with Matula-Goebel number j has n vertices} a(j) = A000107(n). Example: the Matula-Goebel numbers of the rooted trees with 4 vertices are 5,6,7,8 and a(5)+a(6)+a(7)+a(8) = 4+4+3+2=13 = A000107(4).

Examples

			a(4)=2 because the rooted tree with Matula-Goebel number 4 is V; adding an edge at either of the two leaves yields the same rooted tree.
a(5)=4 because the rooted tree with Matula-Goebel number 5 is the path on 4 vertices; adding one edge at any of the vertices yields a new rooted tree.
a(987654321)=18 (reader may verify this on Fig. 2 of the Deutsch paper).
		

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a214567 n = genericIndex a214567_list (n - 1)
    a214567_list = 1 : g 2 where
      g x = y : g (x + 1) where
        y | t > 0     = a214567 t + 1
          | otherwise = 1 + sum (map ((subtract 1) . a214567) $ a027748_row x)
           where t = a049084 x
    -- Reinhard Zumkeller, Sep 03 2013
    
  • Maple
    with(numtheory): a := proc (n) local FS: FS := proc (n) options operator, arrow: factorset(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+a(pi(n)) else 1+add(a(FS(n)[j])-1, j = 1 .. nops(FS(n))) end if end proc: seq(a(n), n = 1 .. 130);
  • Mathematica
    a[n_] := Which[n == 1, 1, PrimeQ[n], 1 + a[PrimePi[n]], True, 1 + Total[a[#] - 1& /@ FactorInteger[n][[All, 1]]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 25 2024 *)
  • PARI
    a(n) = 1 + vecsum([self()(primepi(p)) |p<-factor(n)[,1]]); \\ Kevin Ryde, Oct 19 2022

Formula

a(1)=1; if n is t-th prime, then a(n)=1+a(t); if n is composite, then a(n) = 1+Sum_{p|n}(a(p)-1), where summation is over the distinct prime divisors of n.

A303911 Triangle T(w>=1,1<=n<=w) read by rows: the number of rooted weighted trees with n nodes and weight w.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 1, 4, 10, 13, 9, 1, 5, 16, 31, 35, 20, 1, 6, 24, 60, 98, 95, 48, 1, 7, 33, 103, 217, 304, 262, 115, 1, 8, 44, 162, 423, 764, 945, 727, 286, 1, 9, 56, 241, 743, 1658, 2643, 2916, 2033, 719, 1, 10, 70, 341, 1221, 3224, 6319, 8996, 8984, 5714, 1842, 1, 11, 85, 466, 1893
Offset: 1

Views

Author

R. J. Mathar, May 02 2018

Keywords

Comments

Weights are positive integer labels on the nodes. The weight of the tree is the sum of the weights of its nodes.

Examples

			The triangle starts
1 ;
1  1 ;
1  2  2 ;
1  3  5   4 ;
1  4 10  13    9 ;
1  5 16  31   35    20 ;
1  6 24  60   98    95    48 ;
1  7 33 103  217   304   262   115 ;
The first column (for a single node n=1) is 1, because all the weight is on that node.
		

Crossrefs

Cf. A000081 (diagonal), A000107 (subdiagonal), A036249 (row sums), A303841 (not rooted).

Programs

  • PARI
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    seq(n)={my(v=[1]); for(i=2, n, v=concat([1], v + EulerMT(y*v))); v}
    {my(A=seq(10)); for(n=1, #A, print(Vecrev(A[n])))} \\ Andrew Howroyd, May 19 2018

A051529 INVERT transform of A000081 = [1, 1, 1, 2, 4, 9, 20, 48, 115, 286,...].

Original entry on oeis.org

1, 2, 4, 9, 21, 51, 126, 318, 812, 2100, 5482, 14438, 38303, 102302, 274824, 742210, 2013941, 5488239, 15014376, 41221775, 113542455, 313681756, 868994723, 2413526848, 6719132105, 18746838609, 52412080624, 146812972155, 411977724704, 1158006098132
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, 1, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= proc(n) option remember; local i; `if`(n<1, 1, add(a(n-i) *b(i-1), i=1..n+1)) end: seq(a(n), n=0..30);  # Alois P. Heinz, Apr 01 2009
  • Mathematica
    b[n_] := b[n] = If[n <= 1, 1, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/ (n - 1)];
    a[n_] := a[n] = If[n < 1, 1, Sum[a[n - i]*b[i - 1], {i, 1, n + 1}]];
    a /@ Range[0, 30] (* Jean-François Alcover, Mar 01 2021, after Alois P. Heinz *)

A262253 A weighted sum over the rooted trees of n nodes (A214568).

Original entry on oeis.org

0, 1, 3, 9, 29, 90, 285, 886, 2764, 8543, 26387, 81091, 248752, 760687, 2321950, 7072376
Offset: 0

Views

Author

R. J. Mathar, Sep 16 2015

Keywords

Comments

(More precise name desired.)

Crossrefs

Formula

a(n) = sum_{k>=1} binomial(k+1,2) A214568(n,k).
A007098(x) = A(x) -A(x^2) -A000081(x)*A(x) -{A000107(x)^2 - A000107(x^2)}/2 is the relation between the generating functions, eq. prior to (4.9) by Harary-Robinson.
A(x) = A000081(x)*{A(x)-A(x^2)+ A000107(x^2)/2} +{A000081(x)+A000107(x)+A000107(x)^2}/2 , eq. (4.6) by Harary-Robinson.

A280785 Triangle read by rows: numbers of nonintersecting circles, one marked.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 2, 1, 13, 13, 6, 2, 1, 35, 35, 16, 6, 2, 1, 95, 95, 46, 17, 6, 2, 1, 262, 262, 128, 49, 17, 6, 2, 1, 727, 727, 364, 139, 50, 17, 6, 2, 1, 2033, 2033, 1029, 401, 142, 50, 17, 6, 2, 1, 5714, 5714, 2930, 1147, 412, 143, 50, 17, 6, 2, 1, 16136, 16136, 8344, 3299, 1184, 415, 143, 50, 17, 6, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 20 2017

Keywords

Examples

			Triangle begins:
1,
1,1,
2,2,1,
5,5,2,1,
13,13,6,2,1,
35,35,16,6,2,1,
95,95,46,17,6,2,1,
262,262,128,49,17,6,2,1,
727,727,364,139,50,17,6,2,1,
...
		

Crossrefs

Row sums are A000107.
Previous Showing 11-16 of 16 results.