cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 89 results. Next

A129553 Number of ways to place n+3 queens and 3 pawns on an n X n board so that no two queens attack each other.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 8, 44, 528, 5976, 77896, 1052884, 13666360
Offset: 1

Views

Author

R. Douglas Chatham (d.chatham(AT)moreheadstate.edu), Apr 20 2007

Keywords

Examples

			a(4)=0 because when 7 queens are placed on a 4 X 4 board, at least two queens will be adjacent and therefore mutually attacking.
		

Crossrefs

A171760 The maximum number of sets of n queens which can be placed on an n X n chessboard such that no queen attacks another queen in the same set.

Original entry on oeis.org

0, 1, 0, 0, 2, 5, 4, 7, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17
Offset: 0

Views

Author

Howard A. Landman, Dec 17 2009

Keywords

Comments

a(n) is nonzero for n >= 4 (there is always at least one solution to the n-queens problem). a(n) <= n (because n sets of n queens fill up the board). a(n) = n if n = 1 or 5 (mod 6).
a(n) is at least two for all even n >= 4 since a solution and its reflection will fit on the same board. - Charlie Neder, Jul 24 2018
In addition a(18) >= 16 and a(20) = 20. - Benjamin Butin, Dec 11 2023

Examples

			a(4) = 2 because there are only two solutions to the 4-queens problem and they can both fit on the same board:
 0 1 2 0
 2 0 0 1
 1 0 0 2
 0 2 1 0
a(8) = 6 since at least 6 solutions to the 8-queens problem can fit on the same board but 7 solutions can't:
 3 0 5 2 1 6 0 4
 0 1 4 0 5 3 2 6
 4 6 0 1 2 0 5 3
 5 2 3 6 0 4 1 0
 6 4 1 5 0 2 3 0
 2 5 0 3 4 0 6 1
 0 3 2 0 6 1 4 5
 1 0 6 4 3 5 0 2
a(9) = 7
 7 5 6 3 1 . . 2 4
 6 3 . 4 2 7 1 . 5
 . . 2 7 5 6 3 4 1
 4 7 5 1 . 2 . 6 3
 3 1 4 . 6 . 7 5 2
 . 6 . 5 3 4 2 1 7
 2 4 7 6 . 1 5 3 .
 5 . 1 2 7 3 4 . 6
 1 2 3 . 4 5 6 7 .
a(10) = 8
 3 4 2 8 . . 1 7 5 6
 6 . 7 1 5 4 8 2 . 3
 . 1 5 6 7 2 3 4 8 .
 2 8 4 . 3 6 . 5 1 7
 7 . 6 5 1 8 4 3 . 2
 8 3 . 4 2 7 5 . 6 1
 5 6 8 7 . . 2 1 3 4
 4 7 3 . 8 1 . 6 2 5
 . 5 1 2 6 3 7 8 4 .
 1 2 . 3 4 5 6 . 7 8
		

Crossrefs

Cf. A000170.

Extensions

a(6) and known a(7) added by Charlie Neder, Jul 24 2018
a(8)-a(10) and known a(11)-a(13) from Giovanni Resta, Jul 26 2018
a(14) from Benjamin Butin, Nov 07 2023
a(15)-a(17) from Benjamin Butin, Dec 11 2023

A189842 Number of ways to place n nonattacking composite pieces rook + rider[6,6] on an n X n chessboard.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 4800, 34752, 280512, 2528256, 25282560, 278323200, 3242649600, 40330371072, 536528954880, 7633092132864
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 29 2011

Keywords

Comments

a(n) is also number of permutations p of 1,2,...,n satisfying |p(j+6k)-p(j)|<>6k for all j>=1, k>=1, j+6k<=n

Crossrefs

A189858 Number of ways to place n nonattacking composite pieces rook + rider[3,4] on an n X n chessboard.

Original entry on oeis.org

1, 2, 6, 24, 80, 326, 1566, 9544, 53696, 347382, 2566892, 21907934, 184868860, 1704360992, 17294597926, 192725663600, 2139133978996
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 29 2011

Keywords

Comments

a(n) is also number of permutations p of 1,2,...,n satisfying |p(i+3k)-p(i)|<>4k AND |p(j+4k)-p(j)|<>3k for all i>=1, j>=1, k>=1, i+3k<=n, j+4k<=n.

Crossrefs

A189861 Number of ways to place n nonattacking composite pieces rook + rider[4,5] on an n X n chessboard.

Original entry on oeis.org

1, 2, 6, 24, 120, 552, 2826, 17080, 117816, 943250, 7369128, 63533572, 603300392, 6280101222, 71927971040, 836503868762
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 29 2011

Keywords

Comments

a(n) is also number of permutations p of 1,2,...,n satisfying |p(i+4k)-p(i)|<>5k AND |p(j+5k)-p(j)|<>4k for all i>=1, j>=1, k>=1, i+4k<=n, j+5k<=n

Crossrefs

A189862 Number of ways to place n nonattacking composite pieces rook + rider[4,6] on an n X n chessboard.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 3720, 22336, 153796, 1213344, 10849504, 108891704, 1023690268, 10593791168, 119694887008, 1472935989952
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 29 2011

Keywords

Comments

a(n) is also number of permutations p of 1,2,...,n satisfying |p(i+4k)-p(i)|<>6k AND |p(j+6k)-p(j)|<>4k for all i>=1, j>=1, k>=1, i+4k<=n, j+6k<=n

Crossrefs

A245011 Number of ways to place n nonattacking princesses on an n X n board.

Original entry on oeis.org

1, 4, 6, 86, 854, 9556, 146168, 2660326, 56083228, 1349544632, 36786865968, 1117327217782
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 16 2014

Keywords

Comments

A princess moves like a bishop and a knight.

Crossrefs

A252593 Number of ways to place 8 nonattacking queens on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 92, 13848, 636524, 14803480, 207667564, 2008758532, 14752426528, 87154016752, 432539436508, 1858901487620
Offset: 1

Views

Author

Antal Pinter, Dec 18 2014

Keywords

Comments

Conjectured recurrence order is 477 (see "Non-attacking chess pieces", p. 19). - Vaclav Kotesovec, Dec 19 2014

Crossrefs

Formula

a(n) = n^16/40320 - n^15/432 + 221*n^14/2160 + O(n^13). - Vaclav Kotesovec, Dec 19 2014

Extensions

a(16) from Vaclav Kotesovec, Dec 19 2014
a(17) from Vaclav Kotesovec, Dec 20 2014

A260189 a(n) = A033148(n) / 2^floor(n/4).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 4, 8, 0, 0, 15, 22, 0, 0, 52, 51, 0, 0, 257, 342, 0, 0, 1589, 2609, 0, 0, 11417, 16896, 0, 0, 75375, 99114, 0, 0, 616010, 876579, 0, 0, 5253278, 8551800, 0, 0, 49667373, 79595269, 0, 0, 525731268, 764804085, 0, 0, 5932910966, 8905825760, 0, 0
Offset: 1

Views

Author

Vaclav Kotesovec, following a suggestion of Don Knuth, Jul 18 2015

Keywords

References

  • W. Ahrens, Mathematische Unterhaltungen und Spiele, 2nd edition, volume 1, Teubner, 1910, pages 249-258.
  • Maurice Kraitchik, Le probleme des reines, Bruxelles: L'Échiquier, 1926, 18.

Crossrefs

A269133 Number of ways to place m nonattacking queens on an m X n board, 1 <= m <= n (triangular array).

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 4, 6, 4, 2, 5, 12, 14, 12, 10, 6, 20, 36, 46, 40, 4, 7, 30, 76, 140, 164, 94, 40, 8, 42, 140, 344, 568, 550, 312, 92, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680, 12, 110, 756, 4080, 16852, 52856, 120104, 195270, 222720, 160964, 68264, 14200
Offset: 1

Views

Author

Marko Riedel, Feb 19 2016

Keywords

Examples

			The triangular array begins:
   n\m  1   2   3    4     5     6      7      8      9     10    11    12
   1    1
   2    2   0
   3    3   2   0
   4    4   6   4    2
   5    5  12  14   12    10
   6    6  20  36   46    40     4
   7    7  30  76  140   164    94     40
   8    8  42 140  344   568   550    312     92
   9    9  56 234  732  1614  2292   2038   1066    352
  10   10  72 364 1400  3916  7552   9632   7828   4040    724
  11   11  90 536 2468  8492 21362  37248  44148  34774  15116  2680
  12   12 110 756 4080 16852 52856 120104 195270 222720 160964 68264 14200
...
		

Crossrefs

Cf. A000027 (m=1), A002378 (m=2), A061989 (m=3), A061990 (m=4), A061991 (m=5), A061992 (m=6), A061993 (m=7), A172449 (m=8).
Cf. A036464 (2Q), A047659 (3Q), A061994 (4Q), A108792 (5Q), A176186 (6Q).
Cf. A006717, A051906, A319284 (backtrack trees).

Programs

  • PARI
    {A269133(m, n, B=[], t=if(#B, setminus(n, Set(concat(B+t=[-#B..-1], B-t))), n=[1..n]))= if(#B < m-1, vecsum([A269133(m, setminus(n, [t]), concat(B,t)) | t<-t]), #t)} \\ M. F. Hasler, Jan 11 2022
Previous Showing 61-70 of 89 results. Next