cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A174584 Let J_n be n X n matrix which contains 1's only, I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then a(n) is the number of (0,1) n X n matrices A<=J_n-I-P-P^2-P^3 with exactly two 1's in every row and column.

Original entry on oeis.org

0, 1, 31, 3114, 381022
Offset: 5

Views

Author

Vladimir Shevelev, Mar 23 2010

Keywords

References

  • V. S. Shevelev, Development of the rook technique for calculating the cyclic indicators of (0,1)-matrices, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 21-28 (in Russian).
  • S. E. Grigorchuk, V. S. Shevelev, An algorithm of computing the cyclic indicator of couples discordant permutations with restricted position, Izvestia Vuzov of the North-Caucasus region, Nature sciences 3 (1997), 5-13 (in Russian).

Crossrefs

A347927 a(n) is the number of reduced Latin trapezoids of height 3, whose top row has n boxes, the middle row has n+1 boxes, and the bottom row has n+2 boxes.

Original entry on oeis.org

1, 6, 68, 1670, 67295, 3825722, 285667270, 26889145828, 3102187523467, 429700007845870, 70303573947346474, 13405343287124139802, 2945521072579394529097, 738633749151050116349946, 209620243382776121032416188, 66830750007674204750148252472, 23780886787936166425634118631117
Offset: 1

Views

Author

Peter Luschny, Oct 22 2021

Keywords

Examples

			There are 6 reduced Latin trapezoids of height 3 with base of length 4:
----------------------------------------------
    2, 3;       |    4, 3;       |    2, 3;
   3, 1, 2;     |   3, 1, 2;     |   3, 4, 1;
  1, 2, 3, 4;   |  1, 2, 3, 4;   |  1, 2, 3, 4;
-----------------------------------------------
    2, 1;       |    2, 3;       |    2, 3;
   3, 4, 2;     |   3, 4, 2;     |   4, 1, 2;
  1, 2, 3, 4;   |  1, 2, 3, 4;   |  1, 2, 3, 4;
-----------------------------------------------
		

Crossrefs

Cf. A002860 (Latin squares), A000186, A001623, A001626.

A174585 Let J_n be n X n matrix which contains 1's only, I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then a(n) is the number of (0,1,2) n X n matrices A<=2(J_n-I-P-P^2-P^3) with exactly one 1 and one 2 in every row and column.

Original entry on oeis.org

0, 2, 132, 9800, 1309928
Offset: 5

Views

Author

Vladimir Shevelev, Mar 23 2010

Keywords

References

  • V. S. Shevelev, Development of the rook technique for calculating the cyclic indicators of (0,1)-matrices, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 21-28 (in Russian).
  • S. E. Grigorchuk, V. S. Shevelev, An algorithm of computing the cyclic indicator of couples discordant permutations with restricted position, Izvestia Vuzov of the North-Caucasus region, Nature sciences 3 (1997), 5-13 (in Russian).

Crossrefs

A176901 Number of 3 X n semireduced Latin rectangles, that is, having exactly n fixed points in the first two rows.

Original entry on oeis.org

4, 72, 1584, 70720, 3948480, 284570496, 25574768128, 2808243910656, 369925183388160, 57585548812887040, 10458478438093154304, 2191805683821733404672, 525011528578874444283904, 142540766765931981615759360, 43542026550306796238178877440, 14867182204795857282384287236096, 5640920219495105293649671985430528
Offset: 3

Views

Author

Vladimir Shevelev, Apr 28 2010

Keywords

Comments

A Latin rectangle is called reduced if its first row is [1,2,...,n] (the number of 3 X n reduced Latin rectangles is given in A000186). Therefore a Latin rectangle having exactly n fixed points in the first two rows may be called "semireduced". Thus if A1(i), A2(i), i=1,...,n, are the first two rows, then, for every i, either A1(i)=i or A2(i)=i.

Crossrefs

Formula

Let F_n = A087981(n) = n! * Sum_{2*k_2+...+n*k_n=n, k_i>=0} Product_{i=2..n} 2^k_i/(k_i!*i^k_i). Then a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * F_k * F_(n-k) * u_(n-2*k), where u(n) = A000179(n). - Vladimir Shevelev, Mar 30 2016

Extensions

More terms from William P. Orrick, Jul 25 2020

A220905 Triangle read by rows: rook numbers of certain "probleme des rencontres" boards of the second kind of size n X k (0 <= k <= n).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 6, 2, 1, 24, 132, 176, 24, 1, 60, 960, 4580, 5040, 552, 1, 120, 4260, 52960, 213000, 206592, 21280, 1, 210, 14070, 368830, 3762360, 13109712, 11404960, 1073160
Offset: 0

Views

Author

N. J. A. Sloane, Jan 02 2013

Keywords

Comments

Rows 0 through 2 were not given in the reference and should be checked. (There is a Maple program in the Appendix).
What are the row sums?

Examples

			Triangle begins:
  1
  1,   0
  1,   2,     0
  1,   6,     6,      2
  1,  24,   132,    176,      24
  1,  60,   960,   4580,    5040,      552
  1, 120,  4260,  52960,  213000,   206592,    21280
  1, 210, 14070, 368830, 3762360, 13109712, 11404960, 1073160
  ...
		

Crossrefs

Right-hand diagonal is A000186.

A275922 Number of 6 X n Latin rectangles.

Original entry on oeis.org

9408, 16942080, 335390189568, 12952605404381184, 870735405591003709440, 96299552373292505158778880, 16790769154925929673725062021120, 4453330421956050777867897829494620160, 1742101863056111789338065277444595027804160, 978514587314819902819845847828230416011100160000
Offset: 6

Views

Author

N. J. A. Sloane, Aug 28 2016

Keywords

Crossrefs

Previous Showing 21-26 of 26 results.