A174584
Let J_n be n X n matrix which contains 1's only, I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then a(n) is the number of (0,1) n X n matrices A<=J_n-I-P-P^2-P^3 with exactly two 1's in every row and column.
Original entry on oeis.org
0, 1, 31, 3114, 381022
Offset: 5
- V. S. Shevelev, Development of the rook technique for calculating the cyclic indicators of (0,1)-matrices, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 21-28 (in Russian).
- S. E. Grigorchuk, V. S. Shevelev, An algorithm of computing the cyclic indicator of couples discordant permutations with restricted position, Izvestia Vuzov of the North-Caucasus region, Nature sciences 3 (1997), 5-13 (in Russian).
A347927
a(n) is the number of reduced Latin trapezoids of height 3, whose top row has n boxes, the middle row has n+1 boxes, and the bottom row has n+2 boxes.
Original entry on oeis.org
1, 6, 68, 1670, 67295, 3825722, 285667270, 26889145828, 3102187523467, 429700007845870, 70303573947346474, 13405343287124139802, 2945521072579394529097, 738633749151050116349946, 209620243382776121032416188, 66830750007674204750148252472, 23780886787936166425634118631117
Offset: 1
There are 6 reduced Latin trapezoids of height 3 with base of length 4:
----------------------------------------------
2, 3; | 4, 3; | 2, 3;
3, 1, 2; | 3, 1, 2; | 3, 4, 1;
1, 2, 3, 4; | 1, 2, 3, 4; | 1, 2, 3, 4;
-----------------------------------------------
2, 1; | 2, 3; | 2, 3;
3, 4, 2; | 3, 4, 2; | 4, 1, 2;
1, 2, 3, 4; | 1, 2, 3, 4; | 1, 2, 3, 4;
-----------------------------------------------
- Peter Luschny, Table of n, a(n) for n = 1..100. Data from George Spahn and Doron Zeilberger, see link.
- George Spahn and Doron Zeilberger, Automatic Counting of Generalized Latin Rectangles and Trapezoids, Enumerative Combinatorics and Applications, 2:1 (2022).
- George Spahn and Doron Zeilberger, Latin trapezoids with three rows, the first 100 terms.
- George Spahn and Doron Zeilberger, Latin trapezoids, a Maple package.
A174585
Let J_n be n X n matrix which contains 1's only, I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then a(n) is the number of (0,1,2) n X n matrices A<=2(J_n-I-P-P^2-P^3) with exactly one 1 and one 2 in every row and column.
Original entry on oeis.org
0, 2, 132, 9800, 1309928
Offset: 5
- V. S. Shevelev, Development of the rook technique for calculating the cyclic indicators of (0,1)-matrices, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 21-28 (in Russian).
- S. E. Grigorchuk, V. S. Shevelev, An algorithm of computing the cyclic indicator of couples discordant permutations with restricted position, Izvestia Vuzov of the North-Caucasus region, Nature sciences 3 (1997), 5-13 (in Russian).
A176901
Number of 3 X n semireduced Latin rectangles, that is, having exactly n fixed points in the first two rows.
Original entry on oeis.org
4, 72, 1584, 70720, 3948480, 284570496, 25574768128, 2808243910656, 369925183388160, 57585548812887040, 10458478438093154304, 2191805683821733404672, 525011528578874444283904, 142540766765931981615759360, 43542026550306796238178877440, 14867182204795857282384287236096, 5640920219495105293649671985430528
Offset: 3
- V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat.(J. of the Akademy of Sciences of Russia) 4(1992), 91-110.
- V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, Diskr. Mat., 1993, 5, no.1, 3-35 (Russian).
- V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, English translation, Discrete Math. and Appl., 1993, 3:3, 229-263 (pp. 255-257).
A220905
Triangle read by rows: rook numbers of certain "probleme des rencontres" boards of the second kind of size n X k (0 <= k <= n).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 6, 6, 2, 1, 24, 132, 176, 24, 1, 60, 960, 4580, 5040, 552, 1, 120, 4260, 52960, 213000, 206592, 21280, 1, 210, 14070, 368830, 3762360, 13109712, 11404960, 1073160
Offset: 0
Triangle begins:
1
1, 0
1, 2, 0
1, 6, 6, 2
1, 24, 132, 176, 24
1, 60, 960, 4580, 5040, 552
1, 120, 4260, 52960, 213000, 206592, 21280
1, 210, 14070, 368830, 3762360, 13109712, 11404960, 1073160
...
A275922
Number of 6 X n Latin rectangles.
Original entry on oeis.org
9408, 16942080, 335390189568, 12952605404381184, 870735405591003709440, 96299552373292505158778880, 16790769154925929673725062021120, 4453330421956050777867897829494620160, 1742101863056111789338065277444595027804160, 978514587314819902819845847828230416011100160000
Offset: 6
Comments