A345328 a(n) is the smallest integer k>1 such that |log(k)-round(log(k))| is smaller than 10^(-n).
3, 20, 1096, 2981, 59874, 442413, 8886110, 65659969, 178482301, 3584912846, 26489122130, 195729609429, 3931334297144, 78962960182680, 214643579785916, 4311231547115195, 31855931757113756, 86593400423993747, 12851600114359308275, 34934271057485095348
Offset: 1
Keywords
Examples
For n=4 a(n)=2981, because 2981 is the smallest integer greater than 1 such that |log(2981)-round(2981)| = 0.00001409... < 10^(-4).
Programs
-
Maple
n := 1: for i from 2 to 10^10 do if abs(evalf(log(i)) - floor(log(i) + 1/2)) < 10^(-n) then print(i); n := n + 1 fi end do;
-
PARI
\\ suitable precision needed. a(n)={my(epsilon=1.0/10^n); for(k=1, oo, my(t=floor(exp(k))); if(k-log(t)
Andrew Howroyd, Jun 14 2021
Extensions
Terms a(10) and beyond from Andrew Howroyd, Jun 14 2021
Comments