A375121 Number of odd reduced Latin squares of order n.
0, 0, 0, 0, 16, 3552, 8332800
Offset: 1
Examples
For n=5 the 16 squares are: [[1, 2, 3, 4, 5],[2, 1, 4, 5, 3],[3, 4, 5, 1, 2],[4, 5, 2, 3, 1],[5, 3, 1, 2, 4]]; [[1, 2, 3, 4, 5],[2, 1, 4, 5, 3],[3, 4, 5, 2, 1],[4, 5, 1, 3, 2],[5, 3, 2, 1, 4]]; [[1, 2, 3, 4, 5],[2, 1, 5, 3, 4],[3, 5, 4, 1, 2],[4, 3, 2, 5, 1],[5, 4, 1, 2, 3]]; [[1, 2, 3, 4, 5],[2, 1, 5, 3, 4],[3, 5, 4, 2, 1],[4, 3, 1, 5, 2],[5, 4, 2, 1, 3]]; [[1, 2, 3, 4, 5],[2, 3, 1, 5, 4],[3, 4, 5, 2, 1],[4, 5, 2, 1, 3],[5, 1, 4, 3, 2]]; [[1, 2, 3, 4, 5],[2, 3, 1, 5, 4],[3, 5, 4, 1, 2],[4, 1, 5, 2, 3],[5, 4, 2, 3, 1]]; [[1, 2, 3, 4, 5],[2, 3, 4, 5, 1],[3, 1, 5, 2, 4],[4, 5, 2, 1, 3],[5, 4, 1, 3, 2]]; [[1, 2, 3, 4, 5],[2, 3, 5, 1, 4],[3, 1, 4, 5, 2],[4, 5, 1, 2, 3],[5, 4, 2, 3, 1]]; [[1, 2, 3, 4, 5],[2, 4, 1, 5, 3],[3, 5, 2, 1, 4],[4, 1, 5, 3, 2],[5, 3, 4, 2, 1]]; [[1, 2, 3, 4, 5],[2, 4, 5, 1, 3],[3, 1, 2, 5, 4],[4, 5, 1, 3, 2],[5, 3, 4, 2, 1]]; [[1, 2, 3, 4, 5],[2, 4, 5, 1, 3],[3, 5, 1, 2, 4],[4, 3, 2, 5, 1],[5, 1, 4, 3, 2]]; [[1, 2, 3, 4, 5],[2, 4, 5, 3, 1],[3, 5, 1, 2, 4],[4, 1, 2, 5, 3],[5, 3, 4, 1, 2]]; [[1, 2, 3, 4, 5],[2, 5, 1, 3, 4],[3, 4, 2, 5, 1],[4, 3, 5, 1, 2],[5, 1, 4, 2, 3]]; [[1, 2, 3, 4, 5],[2, 5, 4, 1, 3],[3, 4, 1, 5, 2],[4, 3, 5, 2, 1],[5, 1, 2, 3, 4]]; [[1, 2, 3, 4, 5],[2, 5, 4, 3, 1],[3, 1, 2, 5, 4],[4, 3, 5, 1, 2],[5, 4, 1, 2, 3]]; [[1, 2, 3, 4, 5],[2, 5, 4, 3, 1],[3, 4, 1, 5, 2],[4, 1, 5, 2, 3],[5, 3, 2, 1, 4]].
Links
- Carolin Hannusch, Python program for latin squares
Comments